Computer Vision
![](https://ieee-dataport.org/sites/default/files/styles/3x2/public/tags/images/artificial-intelligence-2167835_1920.jpg?itok=wAd0kf8k)
this is a test
- Categories:
The FLoRI21 dataset provides ultra-widefield fluorescein angiography (UWF FA) images for the development and evaluation of retinal image registration algorithms. Images are included across five subjects. For each subject, there is one montage FA image that serves as the common reference image for registration and a set of two or more individual ("raw") FA images (taken over multiple clinic visits) that are target images for registration. Overall, these constitute 15 reference-target image pairs for image registration.
- Categories:
![](https://ieee-dataport.org/sites/default/files/styles/3x2/public/tags/images/eye-3374462_1920.jpg?itok=rR1Ez_Cm)
The PS_Sculpture training dataset introduced by the PS-FCN [1] contains various non-Lambertian reflectances, cast shadows, interreflections and effective noise information. However, for dark materials such as black-phenolic and steel, significant data loss happens due to 8-bit quantification. To lessen this data loss, we design a new supplementary training dataset rendered by 10 blobby objects and 10 other objects freely downloaded from the Internet and the real BRDF data comes from the MERL dataset [2].
- Categories:
![](https://ieee-dataport.org/sites/default/files/styles/3x2/public/tags/images/artificial-intelligence-3382521_1920.jpg?itok=Vz0tijaY)
These simulated live cell microscopy sequences were generated by the CytoPacq web service https://cbia.fi.muni.cz/simulator [R1]. The dataset is composed of 51 2D sequences and 41 3D sequences. The 2D sequences are divided into distinct 44 training and 7 test sets. The 3D sequences are divided into distinct 34 training and 7 test sets. Each sequence contains up to 200 frames.
- Categories:
![](https://ieee-dataport.org/sites/default/files/styles/3x2/public/tags/images/artificial-intelligence-2167835_1920.jpg?itok=wAd0kf8k)
Data augmentation is commonly used to increase the size and diversity of the datasets in machine learning. It is of particular importance to evaluate the robustness of the existing machine learning methods. With progress in geometrical and 3D machine learning, many methods exist to augment a 3D object, from the generation of random orientations to exploring different perspectives of an object. In high-precision applications, the machine learning model must be robust with respect to the small perturbations of the input object.
- Categories:
![](https://ieee-dataport.org/sites/default/files/styles/3x2/public/tags/images/light-567757_1920.jpg?itok=wSTRk8KZ)
Datasets for image and video aesthetics
1. Video Dataset : 107 videos
This dataset has videos that can be framed into images.
Color contrast,Depth of Field[DoF],Rule of Third[RoT] attributes
that affect aesthetics can be extracted from the video datasets.
2.Slow videos and Fast videos can be assessed for motion
affecting aesthetics
- Categories:
Please cite the following paper when using this dataset:
N. Thakur, "Twitter Big Data as a Resource for Exoskeleton Research: A Large-Scale Dataset of about 140,000 Tweets from 2017–2022 and 100 Research Questions", Journal of Analytics, Volume 1, Issue 2, 2022, pp. 72-97, DOI: https://doi.org/10.3390/analytics1020007
Abstract
- Categories:
Sequential skeleton and average foot pressure data for normal and five pathological gaits (i.e., antalgic, lurching, steppage, stiff-legged, and Trendelenburg) were simultaneously collected. The skeleton data were collected by using Azure Kinect (Microsoft Corp. Redmond, WA, USA). The average foot pressure data were collected by GW1100 (GHIWell, Korea). 12 healthy subjects participated in data collection. They simulated the pathological gaits under strict supervision. A total of 1,440 data instances (12 people x 6 gait types x 20 walkings) were collected.
- Categories:
This is a unique energy-aware navigation dataset collected at the Canadian Space Agency’s Mars Emulation Terrain (MET) in Saint-Hubert, Quebec, Canada. It consists of raw and post-processed sensor measurements collected by our rover in addition to georeferenced aerial maps of the MET (colour mosaic, elevation model, slope and aspect maps). The data are available for download in human-readable format and rosbag (.bag) format. Python data fetching and plotting scripts and ROS-based visualization tools are also provided.
- Categories: