For the task of detecting casualties and persons in search and rescue scenarios in drone images and videos, our database called SARD was built. The actors in the footage have simulate exhausted and injured persons as well as "classic" types of movement of people in nature, such as running, walking, standing, sitting, or lying down. Since different types of terrain and backgrounds determine possible events and scenarios in captured images and videos, the shots include persons on macadam roads, in quarries, low and high grass, forest shade, and the like.

Categories:
9 Views

Crowds express emotions as a collective individual, which is evident from the sounds that a crowd produces in particular events, e.g., collective booing, laughing or cheering in sports matches, movies, theaters, concerts, political demonstrations, and riots.

Instructions: 

Extract locally the zip files, read the readme file.

Instructions for dataset usage are included in the open access paper: Franzoni, V., Biondi, G., Milani, A., Emotional sounds of crowds: spectrogram-based analysis using deep learning (2020) Multimedia Tools and Applications, 79 (47-48), pp. 36063-36075. https://doi.org/10.1007/s11042-020-09428-x

File are released under Creative Commons Attribution-ShareAlike 4.0 International License

Categories:
43 Views

The early detection of damaged (partially broken) outdoor insulators in primary distribution systems is of paramount importance for continuous electricity supply and public safety. In this dataset, we present different images and videos for computer vision-based research. The dataset comprises images and videos taken from different sources such as a Drone, a DSLR camera, and a mobile phone camera.

Instructions: 

Please find the attached file for complete description

Categories:
109 Views

Indirect hand measurement processes have been used to improve remote accessibility and non-contact acquisition methods. This is particularly helpful when developing custom products, such as prostheses or gloves, to a user. Indirect hand measurements, however, may be difficult to acquire due to the requirement that certain specifications to be met. In the case of indirect measurement determination from 3D scans, obstructions may affect the observed outcome. This is especially true when using low-cost 3D scanners that have not been optimized for medical use.

Instructions: 

The data is provided in .xlsx Excel format. It contains one sheet that includes all the hand measurements corresponding with the devices used. Key measurements for each device are summarized in four .txt files, each belonging to a separate scanner. The .R file is included and contains the R code used for statistical analysis of the observed measurements. 

Categories:
19 Views

Data for "A Framework for Recognizing and Estimating Human Concentration Levels"

Categories:
46 Views

Segmentation of TC clouds in 2016. The segmentation task was accomplished by an algorithm which takes a time series of brightness temperature images of TCs and uses image processing techniques to acquire segmentation for each image in a semi-supervised manner. 

Instructions: 

2016 TC cloud segmentation animation

Categories:
52 Views

 

Instructions: 

In order to load the data, we provide below an example routine working within PyTorch frameworks. We provide two different resolutions, 800 and 7000 um/px.

Within each resolution, we provide .csv files, containing all metadata information for all the included files, comprising:

  • image_id;
  • label (6 classes - HP, NORM, TA.HG, TA.LG, TVA.HG, TVA.LG);
  • type (4 classes - HP, NORM, HG, LG);
  • reference WSI;
  • reference region of interest in WSI (roi);
  • resolution (micron per pixels, mpp);
  • coordinates for the patch (x, y, w, h).

Below you can find the dataloader class of UNITOPatho for PyTorch. More examples can be found here.


import torch

import torchvision

import numpy as np

import cv2

import os

 

class UNITOPatho(torch.utils.data.Dataset):

def __init__(self, df, T, path, target, subsample=-1, gray=False, mock=False):

self.path = path

self.df = df

self.T = T

self.target = target

self.subsample = subsample

self.mock = mock

self.gray = gray

allowed_target = ['type', 'grade', 'top_label']

if target not in allowed_target:

print(f'Target must be in {allowed_target}, got {target}')

exit(1)

print(f'Loaded {len(self.df)} images')
 

def __len__(self):

return len(self.df)

def __getitem__(self, index):

entry = self.df.iloc[index]

image_id = entry.image_id

image_id = os.path.join(self.path, entry.top_label_name, image_id)

img = None

if self.mock:

C = 1 if self.gray else 3

img = np.random.randint(0, 255, (224, 224, C)).astype(np.uint8)

else:

img = cv2.imread(image_id)

if self.subsample != -1:

w = img.shape[0]

while w//2 > self.subsample:

img = cv2.resize(img, (w//2, w//2))

w = w//2

img = cv2.resize(img, (self.subsample, self.subsample))

if self.gray:

img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

img = np.expand_dims(img, axis=2)

else:

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

if self.T is not None:

img = self.T(img)

return img, entry[self.target]

Categories:
140 Views

This is a collection of 2D and 3D images used for grayscale image processing tests. It includes at least 8 images of each of the following sizes:

Categories:
66 Views

The boring and repetitive task of monitoring video feeds makes real-time anomaly detection tasks difficult for humans. Hence, crimes are usually detected hours or days after the occurrence. To mitigate this, the research community proposes the use of a deep learning-based anomaly detection model (ADM) for automating the monitoring process.

Categories:
127 Views

This datset contains 2000  images of size 256 X256. The dataset is created by captuirng photos using mobile phone. This dataset is applicable for two classes namely water and wet surface.

Instructions: 

This dataset can be used for two classes such as water and wet surface.

Categories:
136 Views

Pages