Biophysiological Signals

One of the grand challenges in neuroscience is to understand the developing brain ‘in action and in context’ in complex natural settings. To address this challenge, it is imperative to acquire brain data from freely-behaving children to assay the variability and individuality of neural patterns across gender and age.

Categories:
2532 Views

Recent advances in scalp electroencephalography (EEG) as a neuroimaging tool have now allowed researchers to overcome technical challenges and movement restrictions typical in traditional neuroimaging studies.  Fortunately, recent mobile EEG devices have enabled studies involving cognition and motor control in natural environments that require mobility, such as during art perception and production in a museum setting, and during locomotion tasks.

Categories:
3984 Views

This dataset is associated with the paper, Jackson & Hall 2016, which is open source, and can be found here: http://ieeexplore.ieee.org/document/7742994/

The DataPort Repository contains the data used primarily for generating Figure 1.

Categories:
2376 Views

A group of 10 healthy subjects without any upper limb pathologies participated in the data collection process. A total of 8 activities are performed by each subject. The measurement setup consists of a 5-channel Noraxon Ultium wireless sEMG sensor system. Representative muscle sites of the forearm are identified and self-adhesive Ag/AgCl dual electrodes are placed. The signal (sEMG) recorded during an ADL activity is segmented into functional phases: 1) rest 2) action and 3) release. During the rest phase, the subject is instructed to rest the muscles in a natural way.

Categories:
61 Views

Brain-Computer Interface (BCI) technology facilitates a direct connection between the brain and external devices by interpreting neural signals. It is critical to have datasets that contain patient's native languages while developing BCI-based solutions for neurological disorders. However, present BCI research lacks appropriate language-specific datasets, particularly for languages such as Telugu, which is spoken by more than 90 million people in India.

Categories:
329 Views

This dataset comprises radar-acquired signals from 15 subjects walking on a treadmill, aimed at exploring methodologies for non-contact vital sign detection under conditions of significant body movement. Each subject participated in four experimental sessions, where radar data were collected using two Continuous Wave (CW) radars positioned to capture signals from the front and back of the subject. The data includes both raw and demodulated signals synchronized with ground-truth data obtained from a BioPac system.

Categories:
68 Views

In this study, we collected EEG and EMG data from 16 subjects during the MI process and constructed a homemade MI-hBCI dataset. The participants included 10 males (mean age: 22.3±3.1 years) and 6 females (mean age: 22.1±2.4 years). All the subjects were right-handed, had normal vision, and had no motor impairment; all the participants signed a consent form and were informed of the experimental procedure and precautions before the experiment.

 

Categories:
107 Views

The Human Activity Recognition (HAR) dataset comprises comprehensive data collected from various human activities including walking, running, sitting, standing, and jumping. The dataset is designed to facilitate research in the field of activity recognition using machine learning and deep learning techniques. Each activity is captured through multiple sensors providing detailed temporal and spatial data points, enabling robust analysis and model training.

Categories:
205 Views

This dataset contains EEG error-related potential signals elicited by humans while observing an AI agent play an atari-based maze game.

Categories:
124 Views
Developing mind-controlled prosthetics that seamlessly integrate with the human nervous system is a significant challenge in the field of bioengineering. This project investigates the use of labelled brainwave patterns to control a bionic arm equipped with a sense of touch. The core objective is to establish a communication channel between the brain and the artificial limb, enabling intuitive and natural control while incorporating sensory feedback.

The project involves:
    Categories:
    528 Views

    Pages