One of the grand challenges in neuroscience is to understand the developing brain ‘in action and in context’ in complex natural settings. To address this challenge, it is imperative to acquire brain data from freely-behaving children to assay the variability and individuality of neural patterns across gender and age.


Recent advances in scalp electroencephalography (EEG) as a neuroimaging tool have now allowed researchers to overcome technical challenges and movement restrictions typical in traditional neuroimaging studies.  Fortunately, recent mobile EEG devices have enabled studies involving cognition and motor control in natural environments that require mobility, such as during art perception and production in a museum setting, and during locomotion tasks.


This dataset is associated with the paper, Jackson & Hall 2016, which is open source, and can be found here:

The DataPort Repository contains the data used primarily for generating Figure 1.


** Please note that this is under construction, and all data and code is still being uploaded whilst this notice is present. Thank-you. Tom **

All code is hosted as a GIT repository (below), as well as instructions, which can be found by clicking on the link/file called in that repository.

You are free to clone/pull this repository and use it under MIT license, on the understanding that any use of this code will be acknowledged by citing the original paper, DOI: 10.1109/TNSRE.2016.2612001, which is Open Access and can be found here:


Electroretinography (ERG) has great potential in visual health detection in early diagnosis and intervention. To date, optical coherence tomography and other diagnostic tests are mainly used. Clinically used ERG is an important diagnostic assessment for various retinal diseases, such as hereditary diseases (retinitis pigmentosa, choroideremia, cone dystrophy, etc), diabetic retinopathies, glaucoma, macular degeneration, toxic retinopathies etc. A database of five types of adult and pediatric biomedical electroretinography signals is presented in this study.



1. A.E. Zhdanov, A.Yu. Dolganov, E. Lucian, X. Bao, V.I. Borisov, V.N. Kazajkin, V.O. Ponomarev, A.V. Lizunov, L.G. Dorosinskiy, “OculusGraphy: Overview of Retinal Toxicity Methods Based on Biomedical Signals Analysis” in 2020 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 2020.
2. A.E. Zhdanov, A.Yu. Dolganov, V.N. Kazajkin, V.O. Ponomarev, A.V. Lizunov, V.I. Borisov, E. Lucian, X. Bao, L.G. Dorosinskiy, “OculusGraphy: Literature Review on Electrophysiological Research Methods in Ophthalmology and Electroretinograms Processing Using Wavelet Transform” in 2020 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 2020.


The file "00 Description of Research Protocols.pdf" contains a description of the protocols used in this study. The file "01 Appendix 1.xlsx" contains the resulting analysis data of 5 signal types. The file contains filtered signals and the following information: diagnosis, age, wave amplitude, wave latency. The file "02 Appendix 2.xlsx" contains a series of signals. The file contains the following information: patient number, signal.
For further questions please contact Mr. Aleksei E. Zhdanov (correspondence e-mail:


We express our most profound appreciation for cand. med. Oleg V. Shilovskikh CEO of IRTC Eye Microsurgery Ekaterinburg Center for the opportunity to publish the database and disseminate scientific knowledge. The ERG signals data decryption within the study was supported by RFBR, project number 20-07-00498, and 18-29-03088. The ERG signals data processing was supported by Act 211 Government of the Russian Federation, contract 02.A03.21.0006.


This dataset is associated with an IEEE journal submission titled: "Prediction of larynx function using multichannel surface EMG classification" by the associated authors. The dataset consists of surface electromyography (sEMG) signals recorded from 10 study participants (5 control, 5 laryngectomees), each undertaking 3 recording sessions.

During each session the following were recorded:


1 folder for each session: "P1_S1" = Participant 1 Session 1

1 .csv file exists for each recording. Each .csv file is structured as follows:

If there are 6 columns:

  • EMG-intercostal,EMG-submental,pneumotachometry,EMG-diaphragm,trigger,microphone
  • mV,mV,cmH20,mV,N/A,V

If there are 7 columns:

  • EMG-intercostal,EMG-submental,pneumotachometry,EMG-diaphragm,pressure,trigger,microphone
  • mV,mV,cmH20,mV,V,N/A,V


Hardware setup: Two submental electrodes (EL513, 10 mm diameter, BIOPAC Systems UK) were placed on the midline, posterior to the mental protuberance, with 20 mm interelectrode distance. Three electrodes (EL503, 11 mm diameter, BIOPAC) were placed on the right 9th/10th intercostal space close to the anterior axillary line, with 35 mm interelectrode distance. The posterior two electrodes formed the intercostal recording dipole. The anterior electrode and a single electrode placed on the left 9th/10th intercostal space formed the diaphragm recording dipole. Two reference electrodes (EL503) were placed on the midline over the sternum. Two wireless EMG recorders (BIOPAC BN-EMG2 BioNomadix, 2,000 Hz sampling rate, 2,000× gain, 5 to 500 Hz bandpass filter) were placed at the waist and on the head to minimise relative cable length and motion artefacts

See README.txt for additional information


Data consists of an EMG registry obtained with a hybrid electrostimulation and electromyography device. Electrodes were placed to record activity from the extensor muscle of the fingers while the subject was squeezing a hand gripper for 10 seconds and resting for another 10.


The dataset contains the signal recording acquired on vehicle (car) drivers (ten experienced drivers and ten learner drivers) on the same 28.7 km route in the Silesian Voivodeship (in Polish województwo śląskie) in southern Poland. Experienced drivers performed the tasks in their own cars whereas the learner drivers performed the tasks under a supervison of a driving instructor in a specially marked cars (with L sign).


This is the dataset associated with the IEEE-JBHI submission "Synthesizing Electrocardiograms With Atrial Fibrillation Characteristics Using Generative Adversarial Networks". This dataset contains 4,768 synthesized atrial fibrillation (AF)-like ECG signals stored in PhysioNet MAT/HEA format.


Music and animal's basic emotions associated with acoustic signals.

Files associated with animals’ sounds mainly were based on the records from  Volodins Bioacoustic Group Homepage

More details:


Please contact the authors for all inquiries.


Ten volunteers were trained through a series of twelve daily lessons to type in a computer using the Colemak keyboard layout. During the fourth-, eight-, and eleventh-session, electroencephalography (EEG) measurements were acquired for the five trials each subject performed in the corresponding lesson. Electrocardiography (ECG) data at each of those trials were acquired as well. The purpose of this experiment is to aim in the development of different methods to assess the process of learning a new task.


*Experimental setup

Ten volunteers were trained through a series of twelve daily lessons to type in a computer using the Colemak keyboard layout, which is an alternative to the QWERTY and Dvorak layouts, and it is designed for efficient and ergonomic touch typing in English. Six of our volunteers were female, four male, all of them were right-handed, and their mean age was 29.3 years old with an standard deviation of 5.7 years. The lessons used during our experiment are available on-line at In our case, we asked the volunteers to repeat each of them five times (with resting intervals of 2 min in between). We
chose Colemak touch typing as the ability to learn because most people are unaware of its existence, then it is a good candidate for a truly new ability to learn. The training process always took place in a sound-proof cubicle in which the volunteers were isolated from distractions. Hence, the volunteers were sitting in front of the computer and were engaged entirely in the typing lesson. All the experiments were carried at the same hour of the day, and all volunteers were asked to refrain of doing any additional training anywhere else. For more details, see [1].

*Data arrangement

A Matlab-compatible file is provided for each subject. Each .mat file contains a cell array (named Cn) of size 15x10, which corresponds to the 15 trials and 10 channels, respectively. Trials are organized as follows: rows 1-5 correspond to the measurements during the fourth Colemak lesson, rows 6-10 during the eighth, and rows 11-15 during the eleventh. Channels are organized by columns in the following order: (1) ECG, (2) F3, (3) Fz, (4) F4, (5) C3, (6) Cz, (7) C4, (8) P3, (9) POz, and (10) P4. Each of the elements of Cn correspond to a vector containing the output (time samples acquired at 256 Hz sampling frequency) of each of those channels. The lenght of each of those vectors differ between subjects, as well as for each trial depending on the time it took the corresponging subject to complete the Colemak lesson. The units of all output signals are microVolts.


All data has been preprocessed with the automatic decontamination algorithms provided by the B-Alert Live Software (BLS): raw signals are processed to eliminate known artifacts. Particularly, the following actions are taken for different type of artifacts:

• Excursions and amplifier saturation – contaminated periods are replaced with zero values, starting and ending at zero crossing before and after each event.
• Spikes caused by artifact are identified and signal value is interpolated.
• Eye Blinks (EOG) – wavelet transforms deconstruct the signal and a regression equation is used to identify the EEG regions contaminated with eye blinks. Representative EEG preceding the eye blink is inserted in the contaminated region.

Aditionally, all data were detrended using Matlab's command detrend.

*How to acknowledge

We encourage researchers to use the published dataset freely and we ask that they cite the respective data sources as well as this paper:

[1] D. Gutiérrez y M. A. Ramírez-Moreno, “Assessing a Learning Process with Functional ANOVA Estimators of EEG Power Spectral Densities,” Cognitive Neurodynamics, vol. 10, no. 2, pp. 175-183, 2016. DOI: 10.1007/s11571-015-9368-7


All data were acquired in the Laboratory of Biomedical Signal Processing, Cinvestav Monterrey, in the context of M. A. Ramírez-Moreno's MSc thesis work under the advice of D. Gutiérrez.