data of fishing operations from beidou, AIS and policy.

Categories:
6 Views

Opportunity++ is a precisely annotated dataset designed to support AI and machine learning research focused on the multimodal perception and learning of human activities (e.g. short actions, gestures, modes of locomotion, higher-level behavior).

Instructions: 

Complete documentation is provided in the readme.

Categories:
31 Views

README.txt for simulation files IEEE_Collaboration_N_entities_2021.mdl and IEEE_2_Platforms_federation_SF_2021.mdl

 

This is a README.txt for the model published on the paper titled:

 

Improving IoT Federation Resiliency with Distributed Ledger Technology, 2021, Elo T, et al.

 

This readme describes how to replicate the main simulation results from the paper using a Vensim

model file. The model file has been generated using the Vensim DSS Macintosh Version 

8.0.7 Double Precision x64.

Instructions: 

README.txt for simulation files IEEE_Collaboration_N_entities_2021.mdl and IEEE_2_Platforms_federation_SF_2021.mdl

 

This is a README.txt for the model published on the paper titled:

 

Improving IoT Federation Resiliency with Distributed Ledger Technology, 2021, Elo T, et al.

 

This readme describes how to replicate the main simulation results from the paper using a Vensim

model file. The model file has been generated using the Vensim DSS Macintosh Version 

8.0.7 Double Precision x64.

 

To replicate the results of the 2 member federation do the following:

Open the provided model file (“2_Platforms_federation_SF_2021.mdl”) with Vensim DSS Macintosh Version 8.0.7 Double Precision x64, or similar

Push "Simulate". 

You obtain the base case result graph of Figure 4 (leftmost sub picture).

 

Right click “fixes effect on harm multiplier” from the model.

Push “Equation”.

Edit the value in “Equations”. It reads: “1”.

Change it to “0.96”.

Push “OK”.

Push "Simulate". 

You obtain the middle case result graph of Figure 4 (middle sub picture).

 

Right click “fixes effect on harm multiplier” from the model.

Push “Equation”.

Edit the value in “Equations”. It reads: “0.96”.

Change it to “0.92”.

Push “OK”.

Push "Simulate". 

You obtain the middle case result graph of Figure 4 (rightmost sub picture).

 

 

To replicate the results of the associated paper do the following:

Open the provided model file (“IEEE_Collaboration_N_entities_2021.mdl”) with Vensim DSS Macintosh Version 8.0.7 Double Precision x64, or similar

Push “Simulate” to obtain the baseline simulation for the federation of 10 members

To obtain the spread graph around this push “Sensitivity”

Input “0.119935” to the “Minimum”. Input “0.119939” to the “Maximum”.

Choose “RANDOM_UNIFORM” as “Distribution”.

Input “500” to “number of rounds”.

Push “Parameter”

Choose “fixes effect on harm multiplier”. Push OK.

Push “Next”.

Answer “Yes” to the question: “Do you want to incorporate your current editing?”

Choose “Finnish” at “Savelist control” dialog.

Push Select All button from simulation setup control.

Push Finish button in the same dialog.

A Sensitivity Simulation begins.

After the run you return to model view. Then:

Choose “Federation health” from the model by left clicking it.

Choose Sensitivity Graph from the left button menu.

A Window appears replicating the result for Fig. 7 of the publication.

 

 

To replicate the results of the 3 member federation do the following:

Open the provided model file (“IEEE_Collaboration_N_entities_2021.mdl”) with Vensim DSS Macintosh Version 8.0.7 Double Precision x64, or similar

Right click “fixes effect on harm multiplier” from the model.

Push “Equation”.

Edit the value in “Equations”. It reads: “0.119935”.

Change it to “0.5”.

Push “OK”.

Push “Subscripts”.

Push “Edit…”.

Edit the value in “Equations”. It currently reads: “(f1-f10)”.

Change it to “(f1-f3)” to simulate a three member federation.

Push “OK”.

Push “Close” in “Subscript Control” dialog.

Push simulate to get a new baseline for a three member federation.

Push “Sensitivity”.

Check that “Number of” reads “500”.

Select the simulation setup line from "Currently active parameters".

Push "Modify Selected".

Input “0.500” to the “Minimum”.

Input “0.502” to the “Maximum”.

Check that “Distribution” is “RANDOM_UNIFORM”.

Push “Parameter”.

Choose “fixes effect on harm multiplier”. Push OK.

Push “Next”.

Answer “Yes” to the question: “Do you want to incorporate your current editing?”

Choose “Finnish” at “Savelist control” dialog.

A Sensitivity Simulation begins.

This simulation is visible faster due to 3 member federation being much more simple to simulate that the 10 member federation.

Choose “Federation health” from the model by left clicking it.

Choose Sensitivity Graph from the left button menu.

A Window appears replicating the result for Fig. 6 of the publication.

 

 

To replicate the results of the 3 member federation do the following:

Open the provided model file (“IEEE_Collaboration_N_entities_2021.mdl”) with Vensim DSS Macintosh Version 8.0.7 Double Precision x64, or similar

Push “Subscripts”.

Push “Edit…”.

Edit the value in “Equations”. It currently reads: “(f1-f10)”.

Change it to “(f1-f5)” to simulate a three member federation.

Push “OK”.

Push “Close” in “Subscript Control” dialog.

Right click “initial success” from the model.

Push “Equation”.

Edit the value in “Equations”. It reads: “50”.

Input a vector from Table 3: "100,50,50,5,5".

Push “Close”.

Right click “fixes effect on harm multiplier” from the model.

Push “Equation”.

Edit the value in “Equations”. It reads: “0.119935”.

Change it to “0.2”.

Push “OK”.

To obtain the spread graph around this push “Sensitivity”

Input “0.20” to the “Minimum”. Input “0.26” to the “Maximum”.

Choose “RANDOM_UNIFORM” as “Distribution”.

Input “500” to “number of rounds”.

Push “Parameter”

Choose “fixes effect on harm multiplier”. Push OK.

Push “Next”.

Answer “Yes” to the question: “Do you want to incorporate your current editing?”

Choose “Finnish” at “Savelist control” dialog.

Push Select All button from simulation setup control.

Push Finish button in the same dialog.

A Sensitivity Simulation begins.

After the run you return to model view. Then:

Choose “Federation health” from the model by left clicking it.

Choose Sensitivity Graph from the left button menu.

A Window appears replicating the result for Fig. 8 of the publication.

 

 

IEEE_Collaboration_N_entities_qualitative_with_DLT_2021.png:

This model is qualitative so only a graphical presentation as a bitmap is given.

Categories:
11 Views

Any work using this dataset should cite the following paper:

 Nirmalya Thakur and Chia Y. Han, "An open access dataset of tweets related to exoskeletons and 100 research questions, " arXiv [cs.CY], 2021.

 

Abstract

 

Instructions: 

Please refer to the paper

Nirmalya Thakur and Chia Y. Han, "An open access dataset of tweets related to exoskeletons and 100 research questions", arXiv [cs.CY], 2021.

Categories:
367 Views

Abstract—In the 2021 and later we know that the technology

will have key participation of to help us in all kind of tasks

mainly using internet connection, due the new normality.

Industry 4.0 has been one of the most relevant field. IoT as part

of it. This Systematic Literature Review (SLR) we will cover

the South America countries and their development status,

addressing the development categories and the Hardware that

has been cited on papers on the last 5 years.

Categories:
59 Views

We elaborate on the dataset collected from our testbed developed at Washington University in St. Louis, to perform real-world IIoT operations, carrying out attacks that are more prelevant against IIoT systems. This dataset is to be utilized in the research of AI/ML based security solutions to tackle the intrusion problem.

Categories:
248 Views

Resource Efficient Real-Time Reliability Model for Multi-Agent IoT Systems

Resource Efficient Real-Time Reliability Model for Multi-Agent IoT Systems is called ERT-CORE. It defines specific input parameters, i.e., system's workload, average request processing time and availability. Defined parameters reflect system's state and react on its changes. Based on these parameters system reliability evaluation is performed.

Categories:
71 Views

Opportunity++ is a precisely annotated dataset designed to support AI and machine learning research focused on the multimodal perception and learning of human activities (e.g. short actions, gestures, modes of locomotion, higher-level behavior).

Categories:
167 Views

The Bluetooth 5.1 Core Specification brought Angle of Arrival (AoA) based Indoor Localization to the Bluetooth Standard. This dataset is the result of one of the first comprehensive studies of static Bluetooth AoA-based Indoor Localization in a real-world testbed using commercial off-the-shelf Bluetooth chipsets.

The positioning experiments were carried out on a 100 m² test area using four stationary Bluetooth sensor devices each equipped with eight antennas. With this setup, a median localization accuracy of up to 18 cm was achieved.

Categories:
157 Views

There are two data files, named 'Data1.mdb' and 'Data2.mdb'. A total of 87,272 pieces of data, including 43,607 pieces of data in file 'Data1.mdb' and 43,665 pieces of data in file 'Data2.mdb'. Please open them with ACCESS software.

Categories:
127 Views

Pages