Recent advances in scalp electroencephalography (EEG) as a neuroimaging tool have now allowed researchers to overcome technical challenges and movement restrictions typical in traditional neuroimaging studies.  Fortunately, recent mobile EEG devices have enabled studies involving cognition and motor control in natural environments that require mobility, such as during art perception and production in a museum setting, and during locomotion tasks.

Categories:
1730 Views

This dataset is associated with the paper, Jackson & Hall 2016, which is open source, and can be found here: http://ieeexplore.ieee.org/document/7742994/

The DataPort Repository contains the data used primarily for generating Figure 1.

Instructions: 

** Please note that this is under construction, and all data and code is still being uploaded whilst this notice is present. Thank-you. Tom **

All code is hosted as a GIT repository (below), as well as instructions, which can be found by clicking on the link/file called README.md in that repository.

https://github.com/thomasmhall-newcastle/IEEE-TNSRE-2016-lfLFPs

You are free to clone/pull this repository and use it under MIT license, on the understanding that any use of this code will be acknowledged by citing the original paper, DOI: 10.1109/TNSRE.2016.2612001, which is Open Access and can be found here: http://ieeexplore.ieee.org/document/7742994/

Categories:
932 Views

This data set contains:

 

-88 patients

 

-the noncontrast computed tomography (NCCT) and computed tomography angiography (CTA) performed before thrombectomy.

 

-the VOI of blood clot for NCCT and CTA.

 

For each patient NCCT data is marked "2" and CTA is marked "1".

Instructions: 

For each patient NCCT data is marked "2" and CTA is marked "1".

Categories:
106 Views

Dataset asscociated with a paper in Computer Vision and Pattern Recognition (CVPR)

 

"Object classification from randomized EEG trials"

 

If you use this code or data, please cite the above paper.

Instructions: 

See the paper "Object classification from randomized EEG trials" on IEEE Xplore.

 

Code for analyzing the dataset is included in the online supplementary materials for the paper.

 

The code from the online supplementary materials is also included here.

 

If you use this code or data, please cite the above paper.

Categories:
143 Views

The Magnetic Resonance – Computed Tomography (MR-CT) Jordan University Hospital (JUH) dataset has been collected after receiving Institutional Review Board (IRB) approval of the hospital and consent forms have been obtained from all patients. All procedures followed are consistent with the ethics of handling patients’ data.

Categories:
480 Views

The Magnetic Resonance – Computed Tomography (MR-CT) Jordan University Hospital (JUH) dataset has been collected after receiving Institutional Review Board (IRB) approval of the hospital and consent forms have been obtained from all patients. All procedures followed are consistent with the ethics of handling patients’ data.

Categories:
170 Views

We develop a potential biomarker to subdivide the stress groups into eustress and distress groups using hemodynamic responses of functional near-infrared spectroscopy (fNIRS). We stimulate two stress groups divided by saliva alpha-amylase (sAA) with an international affective picture system (IAPS) inducing positive or negative emotions and measure hemodynamic responses at the same time. As a result, we have developed a newly designed biomarker using fNIRS.

Categories:
77 Views

EEG brain recordings of ADHD and non-ADHD individuals during gameplay of a brain controlled game, recorded with an EMOTIV EEG headset. It can be used to design and test methods to detect individuals with ADHD.

Instructions: 

For details, please see:

Alaa Eddin Alchalabi, S. Shirmohammadi, A. N. Eddin and M. Elsharnouby, “FOCUS: Detecting ADHD Patients by an EEG-Based Serious Game”, IEEE Transactions on Instrumentation and Measurement, Vol. 67, No. 7, July 2018, pp. 1512-1520.

DOI: 10.1109/TIM.2018.2838158

Categories:
805 Views

Ten volunteers were trained through a series of twelve daily lessons to type in a computer using the Colemak keyboard layout. During the fourth-, eight-, and eleventh-session, electroencephalography (EEG) measurements were acquired for the five trials each subject performed in the corresponding lesson. Electrocardiography (ECG) data at each of those trials were acquired as well. The purpose of this experiment is to aim in the development of different methods to assess the process of learning a new task.

Instructions: 

*Experimental setup

Ten volunteers were trained through a series of twelve daily lessons to type in a computer using the Colemak keyboard layout, which is an alternative to the QWERTY and Dvorak layouts, and it is designed for efficient and ergonomic touch typing in English. Six of our volunteers were female, four male, all of them were right-handed, and their mean age was 29.3 years old with an standard deviation of 5.7 years. The lessons used during our experiment are available on-line at colemak.com/Typing_lessons. In our case, we asked the volunteers to repeat each of them five times (with resting intervals of 2 min in between). We
chose Colemak touch typing as the ability to learn because most people are unaware of its existence, then it is a good candidate for a truly new ability to learn. The training process always took place in a sound-proof cubicle in which the volunteers were isolated from distractions. Hence, the volunteers were sitting in front of the computer and were engaged entirely in the typing lesson. All the experiments were carried at the same hour of the day, and all volunteers were asked to refrain of doing any additional training anywhere else. For more details, see [1].

*Data arrangement

A Matlab-compatible file is provided for each subject. Each .mat file contains a cell array (named Cn) of size 15x10, which corresponds to the 15 trials and 10 channels, respectively. Trials are organized as follows: rows 1-5 correspond to the measurements during the fourth Colemak lesson, rows 6-10 during the eighth, and rows 11-15 during the eleventh. Channels are organized by columns in the following order: (1) ECG, (2) F3, (3) Fz, (4) F4, (5) C3, (6) Cz, (7) C4, (8) P3, (9) POz, and (10) P4. Each of the elements of Cn correspond to a vector containing the output (time samples acquired at 256 Hz sampling frequency) of each of those channels. The lenght of each of those vectors differ between subjects, as well as for each trial depending on the time it took the corresponging subject to complete the Colemak lesson. The units of all output signals are microVolts.

*Preprocessing

All data has been preprocessed with the automatic decontamination algorithms provided by the B-Alert Live Software (BLS): raw signals are processed to eliminate known artifacts. Particularly, the following actions are taken for different type of artifacts:

• Excursions and amplifier saturation – contaminated periods are replaced with zero values, starting and ending at zero crossing before and after each event.
• Spikes caused by artifact are identified and signal value is interpolated.
• Eye Blinks (EOG) – wavelet transforms deconstruct the signal and a regression equation is used to identify the EEG regions contaminated with eye blinks. Representative EEG preceding the eye blink is inserted in the contaminated region.

Aditionally, all data were detrended using Matlab's command detrend.

*How to acknowledge

We encourage researchers to use the published dataset freely and we ask that they cite the respective data sources as well as this paper:

[1] D. Gutiérrez y M. A. Ramírez-Moreno, “Assessing a Learning Process with Functional ANOVA Estimators of EEG Power Spectral Densities,” Cognitive Neurodynamics, vol. 10, no. 2, pp. 175-183, 2016. DOI: 10.1007/s11571-015-9368-7

*Credits

All data were acquired in the Laboratory of Biomedical Signal Processing, Cinvestav Monterrey, in the context of M. A. Ramírez-Moreno's MSc thesis work under the advice of D. Gutiérrez.

Categories:
663 Views

EEG signals of various subjects in text files are uploaded. It can be useful for various EEG signal processing algorithms- filtering, linear prediction, abnormality detection, PCA, ICA etc.

Categories:
1089 Views

Pages