This <file> was prepared along with the establishment of the reference intervals for the hematological and biochemical parameters of the juvenile Visayan warty pig (Sus cebifrons negrinus).  The determination of the reference intervals of the juvenile Visayan warty pig was significant, as these reference intervals have never been established for the purpose of assessing the health of this critically endangered species. The file contains six separate sheets featuring the raw and transformed data, as well as the calculated reference interval.


This dataset consists of 1878 labeled images of flowers from blackberry trees from the specie Rubus L. subgenus Rubus Watson. These are white flowers with five petals that blossom in the spring through summer. The images were collected using an Intel RealSense D435i camera inside a greenhouse.

This images were inicially collected to support a robotic autonomous pollination project.


This dataset was prepared to aid in the creation of a machine learning algorithm that would classify the white blood cells in thin blood smears of juvenile Visayan warty pigs. The creation of this dataset was deemed imperative because of the limited availability of blood smear images collected from the critically endangered species on the internet. The dataset contains 3,457 images of various types of white blood cells (JPEG) with accompanying cell type labels (XLSX).


<p>The proliferation of efficient edge computing has enabled a paradigm shift of how we monitor and interpret urban air quality. Coupled with the dense spatiotemporal resolution realized from large-scale wireless sensor networks, we can achieve highly accurate realtime local inference of airborne pollutants. In this paper, we introduce a novel Deep Neural Network architecture targeted at latent time-series regression tasks from continuous, exogenous sensor measurements, based on the Transformer encoder scheme and designed for deployment on low-cost power-efficient edge processors.


Tweets related to 10 different types of disasters were monitored from 28 September 2021 till 6 October 2021. 67528 rows containing 16 fields were extracted using Artificial Intelligence and Natural Language Processing Services of Microsoft.


This dataset contains actual field/experimental data for the following environmental engineering applications, namely:

  • Concentration data generated from filtration systems which treat influents, having contaminant materials, via adsorption process.
  • Streamflow height data collated for 50 states/cities in America for the historical period between 1900-2018.


Europe is covered by distinct climatic zones which include semiarid, the Mediterranean, humid subtropical, marine,

humid continental, subarctic, and highland climates. Land use and land cover change have been well documented in the

past 200 years across Europe1where land cover grassland and cropland together make up 39%2. In recent years, the

agricultural sector has been affected by abnormal weather events. Climate change will continue to change weather


As Science and technology evolve, the environment is getting affected daily. These cause major environmental issues like Global Warming, Ozone layer depletion, Natural resource depletion, etc. These are measured and regulated by local bodies. The data given by the local bodies are average values for a large area, those data might be inaccurate for a small sector or isolated zone. However, there are few techniques such as WSN (Wireless Sensor Networks), IoT (Internet of things) which measures and updates real-time data to a cloud server to overcome the trouble.


The dataset attached is recordings done for 5 parameters to ascertain physical soil composition. Data was collected between March 2021 and April 2021. This dataset is the raw data.


More than 40% of energy resources are consumed in the residential buildings, and most of the energy is used for heating. Improving the energy efficiency of residential buildings is an urgent problem. The collected data is intended to study a dependence of the dynamics heat energy supply from outside temperature and houses characteristics, such as walls material, year of construction, floors amount, etc. This study will support the development of methods for comparing thermal characteristics of residential buildings and carry out recommendations for the energy efficiency increases.