<p>This is the image dataset for satellite image processing&nbsp; which is a collection therml infrared and multispectral images .</p>


Dataset images
Thermal infrared images and multispectral images
image size:512x512
file :.h5








This is a dataset is an example of a distribution of 20 correlated Bernoulli random variables.


Q_joint ... is 5 cells each consists of the joint distributions of 4,8,12,16,20 bits, respectively. The dimension of each cell is 2^n X 1, .e., a vertical column and n=4,8,12,16,20.

Q_conditional... is 5 cells each consists of the conditional distributions of 4 bits given 0, 4, 8,12,16 bits, respectively. In other words, 1:4 bits, 5:8 bits given 1:4 bits, 9:12 bits given 1:8 bits, 13:16 bits given 1:12 bits, 17:20 given 1:16 bits. The dimension of each cell is 2^4=16 X 2^n, i.e., a vertical column and n=4,8,12,16.

Q_ marginal... is 5 cells each consists of the marginal distributions of each 4 consecutive bits, i.e., 1:4 - 5:8 - 9:12 - 13:16 - 17:20, respectively.  The dimension of each cell is 16 X 1, i.e., q vertical column.

Also, a MATLAB code is uploaded to extract conditional and marginal distributions from any given discrete distribution.


Microwave-based breast cancer detection is a growing field that has been investigated as a potential novel method for breast cancer detection. Breast microwave sensing (BMS) systems use low-powered, non-ionizing microwave signals to interrogate the breast tissues. While some BMS systems have been evaluated in clinical trials, many challenges remain before these systems can be used as a viable clinical option, and breast phantoms (breast models) allow for rigorous and controlled experimental investigations.


The University of Manitoba Breast Microwave Imaging Dataset (UM-BMID) isan open-access dataset available to all researchers. The dataset containsdata from experimental scans of MRI-derived breast phantoms.The dataset itself can be found at https://bit.ly/UM-bmid. The complete documentation for the dataset is also available at this link.

A GitHub page associated with the dataset can be found here: https://github.com/UManitoba-BMS/UM-BMID.The dataset is described in an accepted manuscript:T. Reimer, J. Krenkevich, and S. Pistorius, "An open-access experimentaldataset for breast microwave imaging,", in _2020 European Conference onAntennas and Propagation (EuCAP 2020)_, Copenhagen, Denmark, Mar. 2020,pp. 1-5, doi:10.23919/EuCAP48036.2020.9135659.This GitHub repository (https://github.com/UManitoba-BMS/UM-BMID) contains the code used to produce the resultspresented in that paper and supportive scripts for the UM-BMID dataset.


This dataset is a hand noted dataset that consists of two categories, evasion and normal methods. By evasion methods we mean the methods that are used by Android malware to hide their malicious payload, and hinder the dynamic analysis. Normal methods are any other methods that cannot be used as evasion techniques. Also, the evasion methods are categorized into six categories: File access, Integrity check, Location, SMS, Time, Anti-emulation. This dataset can be used by any ML or DL approaches to predict new evasion techniques that can be used by malware to hinder the dynamic analysis.


In this paper, the security-aware robust resource allocation in energy harvesting cognitive radio networks is considered with cooperation between two transmitters while there are uncertainties in channel gains and battery energy value. To be specific, the primary access point harvests energy from the green resource and uses time switching protocol to send the energy and data towards the secondary access point (SAP).


DIDA is a new image-based historical handwritten digit dataset and collected from the Swedish historical handwritten document images between the year 1800 and 1940. It is the largest historical handwritten digit dataset which is introduced to the Optical Character Recognition (OCR) community to help the researchers to test their optical handwritten character recognition methods. To generate DIDA, 250,000 single digits and 200,000 multi-digits are cropped from 75,000 different document images. 


<p>This dataset contains news stories related to Covid-19 pandemic fact-checked by expert fact-checkers.&nbsp;</p>


Data is in .csv files and contains the news article with the corresponding fake rating from USA, India, and Europe.


The accompanying dataset for the CVSports 2021 paper: DeepDarts: Modeling Keypoints as Objects for Automatic Scoring in Darts using a Single Camera

Paper Abstract:


The recommended way to load the labels is to use the pandas Python package:

import pandas as pd

labels = pd.read_pickle("labels.pkl")

See github repository for more information: https://github.com/wmcnally/deep-darts


The heating and electricity consumption data are the results of an energy audit program aggregated for multiple load profiles of a residential customer. These profiles include HVAC systems loads, convenience power, elevator, etc. The datasets are gathered between December 2010 and November 2018 with a one-hour timestep resolution, thereby containing 140,160 measurements, half of which is for heat or electricity. In addition to the historical energy consumption values, a concatenation of weather variables is also available.


This is a publicly available dataset of heating and electricity consumption profiles, aggregated from multiple load profiles of a residential customer. The dataset is gathered between December 2010 and November 2018 with a one-hour time step resolution, thereby containing 70,080 measurements. In addition to the historical energy consumption values, a concatenation of meteorological variables is also included. The weather variables are air pressure, temperature, and humidity plus wind speed and solar irradiation at the predetermined location.