This cell images dataset is collected using an ultrafast imaging system known as asymmetric-detection time-stretch optical microscopy (ATOM)  for training and evaluation. This novel imaging approach can achieve label-free and high-contrast flow imaging with good cellular resolution images at a very high speed. Each acquired image belongs to one of the four classes: THP1, MCF7, MB231 and PBMC.

Categories:
923 Views

Recent advances in scalp electroencephalography (EEG) as a neuroimaging tool have now allowed researchers to overcome technical challenges and movement restrictions typical in traditional neuroimaging studies.  Fortunately, recent mobile EEG devices have enabled studies involving cognition and motor control in natural environments that require mobility, such as during art perception and production in a museum setting, and during locomotion tasks.

Categories:
1408 Views

Retinal Fundus Multi-disease Image Dataset (RFMiD) consisting of a wide variety of pathological conditions. 

Instructions: 

Detailed instructions about this dataset are available on the challenge website: https://riadd.grand-challenge.org/.

Categories:
15 Views

This dataset contains 1944 data, which are scanned by the HIS-RING PACT system.

the data sampling rate of our system is 40 MSa/s, a 128-elements 2.5MHz full-view ring-shaped transducer with 30mm radius. 

 continuous updating.....

Categories:
7 Views

This is our generated 3890 3D skin vessel tissue models which could be used for medical image analysis such as classification, segmentation, reconstruction and quantitative medical image analysis.

Categories:
9 Views

This dataset contains 1216 data, which are scanned by HIS-RING PACT system.

the data sampling rate of our system is 40 MSa/s, a 128-elements 2.5MHz full-view ring-shaped transducer with 30mm radius. 

 continuous updating.....

Categories:
79 Views

Diabetic Retinopathy is the second largest cause of blindness in diabetic patients. Early diagnosis or screening can prevent the visual loss. Nowadays , several computer aided algorithms have been developed to detect the early signs of Diabetic Retinopathy ie., Microaneurysms. The AGAR300 dataset presented here facilitate the researchers for benchmarking MA detection algorithms using digital fundus images. Currently, we have released the first set of database which consists of 28 color fundus images, shows the signs of Microaneurysm.

Instructions: 

The files corresponding to the work reported in paper titled " A novel automated system of discriminating Microaneurysms in fundus images”. The images  are taken from Fundus photography machine with the resolution of 2448x3264. This dataset contains Diabetic Retinopathy images and users of this dataset should cite the following article.

 

D. Jeba Derwin, S. Tamil Selvi, O. Jeba Singh, B. Priestly Shan,”A novel automated system of discriminating Microaneurysms in fundus images”, Biomedical Signal Processing and Control,Vol.58, 2020, pages: 101839,ISSN 1746-8094, https://doi.org/10.1016/j.bspc.2019.101839.

(http://www.sciencedirect.com/science/article/pii/S1746809419304203)

Categories:
136 Views

The dataset is genrated by the fusion of three publicly available datasets: COVID-19 cxr image (https://github.com/ieee8023/covid-chestxray-dataset), Radiological Society of North America (RSNA) (https://www.kaggle.com/c/rsna-pneumonia-detection-challenge), and U.S.  national  library  of  medicine  (USNLM) collected  Montgomery  country - NLM(MC) (http

Categories:
262 Views

We chose 8 publicly available CT volumes of COVID-19 positive patients which were available from https://doi.org/10.5281/zenodo.3757476 and used 3D slicer to generate volumetric annotations of 512*512 dimension for 5 lung lobes namely right upper lobe, right middle lobe, right lower lobe, left upper lobe and left lower lobe. These annotations are validated by a radiologist with over 15 years of experience. 

Instructions: 

CT volumes can be downloaded from https://doi.org/10.5281/zenodo.3757476

Volumetric annotations for 5 lobe segments namely right upper lobe, right middle lobe, right lower lobe, left upper lobe and left lower lobe are saved as segments 1 to 5 respectively. 

For scans with prefix coronacases_00x their corresponding annotations are uploaded with suffix lobes

The scans and annotations measure 512*512 and are in .nii format

Categories:
108 Views

Pages