This cell images dataset is collected using an ultrafast imaging system known as asymmetric-detection time-stretch optical microscopy (ATOM)  for training and evaluation. This novel imaging approach can achieve label-free and high-contrast flow imaging with good cellular resolution images at a very high speed. Each acquired image belongs to one of the four classes: THP1, MCF7, MB231 and PBMC.

Categories:
1947 Views

Recent advances in scalp electroencephalography (EEG) as a neuroimaging tool have now allowed researchers to overcome technical challenges and movement restrictions typical in traditional neuroimaging studies.  Fortunately, recent mobile EEG devices have enabled studies involving cognition and motor control in natural environments that require mobility, such as during art perception and production in a museum setting, and during locomotion tasks.

Categories:
2159 Views

Research data associated with paper: A Semantic Segmentation Model for Lumbar MRI Images using Divergence Loss, comprising the python code, a trained model and empirical results. 

Categories:
13 Views

The Femoropopliteal Artery Stent Dataset is captured by Siemens digital radiography fluoroscopy system Luminos dRF Max. The dataset is from the First Affiliated Hospital of Fujian Medical University in Fuzhou City (Fujian Province, China). The X-ray fluoroscopic image data set of the femoropopliteal artery stent was obtained from different positions of the patient.

Categories:
8 Views

Reconstructed 2D Shepp-Logan phantom and brain MRA projected image using different flat portions in pulsed excitation and magnetic nanoparticle sizes.

Categories:
6 Views

The Open Big Healthy Brains (OpenBHB) dataset is a large (N>5000) multi-site 3D brain MRI dataset gathering 10 public datasets (IXI, ABIDE 1, ABIDE 2, CoRR, GSP, Localizer, MPI-Leipzig, NAR, NPC, RBP) of T1 images acquired across 93 different centers, spread worldwide (North America, Europe and China). Only healthy controls have been included in OpenBHB with age ranging from 6 to 88 years old, balanced between males and females.

Instructions: 

Please read carrefuly the following sections.

Dataset organization

This dataset comprises 3985 images for training and 666 images for test (kept hidden for the challenge), both dedicated to the OpenBHB challenge. Additionally, 628 images are available with missing label information (age, sex, or scanner details) and they are excluded for the current challenge. The exact content of this dataset is described in our paper.

The dataset is organized as follows:

  • All meta-data information (age, sex, site, acquisition setting, magnetic field strengh, etc.) can be found in participants.tsv.
  • Corresponding T1 images pre-processed with CAT12 (VBM), FSL (SBM) and Quasi-Raw can be found in training_data.
  • The pairs (site, acquisition setting) discretized used for the OpenBHB Challenge are in official_site_class_labels.tsv.
  • Additional T1 images with missing label information are in missing_label_data.
  • The metrics used for Quality Check (e.g Euler number for FreeSurfer) can be found in qc.tsv.

Resource:

  • the templates used during the VBM analysis can be found in cat12vbm_space-MNI152_desc-gm_TPM.nii.gz.
  • the templates used during the Quasi-Raw analysis can be found in quasiraw_space-MNI152_desc-brain_T1w.nii.gz.
  • the Region-Of-Interest (ROI) names corresponding to the default CAT12 atlas (Neuromorphometrics) and FSL Desikan and Destrieux atlases can be found in cat12vbm_labels.txt, freesurfer_atlas-desikan_labels.txt and freesurfer_atlas-destrieux_labels.txt respectively.
  • the surface-based feature names derived by FreeSurfer on both Desikan and Destrieux atlases are available in freesurfer_channels.txt.

Acknowledgements

If you use this dataset for your work, please use the following citation:

@article{dufumier2021openbhb,

      title={{OpenBHB: a Large-Scale Multi-Site Brain MRI Data-set for Age Prediction and Debiasing}},

      author={Dufumier, Benoit and Grigis, Antoine and Victor, Julie and Ambroise, Corentin and Frouin, Vincent and Duchesnay, Edouard},

      journal={Under review.},

      year={2021}

}

Licence and Data Usage Agreement

This dataset is under Licence CC BY-NC-SA 3.0. By downloading this dataset, you also agree to the most restrictive Data Usage Agreement (DUA) of all cohorts (see the Data Usage Agreement terms included in this dataset):

  • ABIDE 1 [1]. Licence term CC BY-NC-SA 3.0 (ShareAlike), DUA
  • ABIDE 2 [2]. Licence term CC BY-NC-SA 3.0, DUA
  • IXI [3]. Licence term CC0, DUA
  • CoRR [4] Licence term CC0, DUA
  • GSP [5]  Licence term  DUA
  • NAR [6] Licence term CC0
  • MPI-Leipzig [7] Licence term CC0
  • NPC [8] Licence term CC0
  • RBP [9,10] Licence term CC0
  • Localizer [11] Licence term CC BY 3.0

References

  1. [1] http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
  2. [2] http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
  3. [3] https://brain-development.org/ixi-dataset
  4. [4] Zuo, X.N., et al., An Open Science Resource for Establishing Reliability and Reproducibility in Functional Connectomics, (In Press)
  5. [5] Buckner, Randy L.; Roffman, Joshua L.; Smoller, Jordan W., 2014, "Brain Genomics Superstruct Project (GSP)", https://doi.org/10.7910/DVN/25833, Harvard Dataverse, V10
  6. [6] Nastase, S. A., et al., Narratives: fMRI data for evaluating models of naturalistic language comprehension. https://doi.org/10.18112/openneuro.ds002345.v1.0.1
  7. [7] Babayan, A., Erbey, M., Kumral, D. et al. A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults. Sci Data 6, 180308 (2019). https://doi.org/10.1038/sdata.2018.308
  8. [8] Sunavsky, A. and Poppenk, J. (2020). Neuroimaging predictors of creativity in healthy adults. OpenNeuro. doi: 10.18112/openneuro.ds002330.v1.1.0
  9. [9] Li, P., & Clariana, R. (2019) Reading comprehension in L1 and L2: An integrative appraoch. Journal of Neurolinguistics, 50, 94-105.(https://doi.org/10.1016/j.jneuroling.2018.03.005)
  10. [10] Follmer, J., Fang, S., Clariana, R., Meyer, B., & Li, P (2018). What predicts adult readers' understanding of STEM texts? Reading and Writing, 31, 185-214.(https://doi.org/10.1007/s11145-017-9781-x)
  11. [11] Orfanos, D. P., Michel, V., Schwartz, Y., Pinel, P., Moreno, A., Le Bihan, D., & Frouin, V. (2017). The brainomics/localizer database. NeuroImage, 144, 309-314.
Categories:
315 Views

An enhanced dataset, VQA-RADPh, based on the VQA-RAD dataset.

Categories:
31 Views

The FLoRI21 dataset provides ultra-widefield fluorescein angiography images for the development and evaluation of retinal image registration algorithms. 

Instructions: 

Currently, a sample pair of low resolution images is provided and the associated paper is submitted for review. The entire dataset will be released with the publication of the paper.

Categories:
125 Views

These simulated live cell microscopy sequences were generated by the CytoPacq web service https://cbia.fi.muni.cz/simulator [R1]. The dataset is composed of 51 2D sequences and 41 3D sequences. The 2D sequences are divided into distinct 44 training and 7 test sets. The 3D sequences are divided into distinct 34 training and 7 test sets. Each sequence contains up to 200 frames.

Categories:
63 Views

该舌头图像数据集包含 300 张舌头图像。数据集中所有图像均由我们的图像采集设备采集,图像尺寸为576*768。手动分割被用作基本事实。

Categories:
37 Views

Pages