This cell images dataset is collected using an ultrafast imaging system known as asymmetric-detection time-stretch optical microscopy (ATOM)  for training and evaluation. This novel imaging approach can achieve label-free and high-contrast flow imaging with good cellular resolution images at a very high speed. Each acquired image belongs to one of the four classes: THP1, MCF7, MB231 and PBMC.

Categories:
1321 Views

Recent advances in scalp electroencephalography (EEG) as a neuroimaging tool have now allowed researchers to overcome technical challenges and movement restrictions typical in traditional neuroimaging studies.  Fortunately, recent mobile EEG devices have enabled studies involving cognition and motor control in natural environments that require mobility, such as during art perception and production in a museum setting, and during locomotion tasks.

Categories:
1730 Views

This dataset has information of 83 patients from India. This dataset contains patients’ clinical history, histopathological features, and mammogram. The distinctive aspect of this dataset lies in its collection of mammograms that have benign tumors and used in subclassification of benign tumors. 

Instructions: 

This datasest contains a zip folder of 80 mammograms and an excel file having mammographic features, histopathological features as well as clinical fatures of all the patients. 

Categories:
16 Views

Of late, efforts are underway to build computer-assisted diagnostic tools for cancer diagnosis via image processing. Such computer-assisted tools require capturing of images, stain color normalization of images, segmentation of cells of interest, and classification to count malignant versus healthy cells. This dataset is positioned towards robust segmentation of cells which is the first stage to build such a tool for plasma cell cancer, namely, Multiple Myeloma (MM), which is a type of blood cancer. The images are provided after stain color normalization.

Instructions: 

IMPORTANT:

If you use this dataset, please cite below publications-

  1. Anubha Gupta, Rahul Duggal, Shiv Gehlot, Ritu Gupta, Anvit Mangal, Lalit Kumar, Nisarg Thakkar, and Devprakash Satpathy, "GCTI-SN: Geometry-Inspired Chemical and Tissue Invariant Stain Normalization of Microscopic Medical Images," Medical Image Analysis, vol. 65, Oct 2020. DOI: https://doi.org/10.1016/j.media.2020.101788. (2020 IF: 11.148)
  2. Shiv Gehlot, Anubha Gupta and Ritu Gupta, "EDNFC-Net: Convolutional Neural Network with Nested Feature Concatenation for Nuclei-Instance Segmentation," ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp. 1389-1393.
  3. Anubha Gupta, Pramit Mallick, Ojaswa Sharma, Ritu Gupta, and Rahul Duggal, "PCSeg: Color model driven probabilistic multiphase level set based tool for plasma cell segmentation in multiple myeloma," PLoS ONE 13(12): e0207908, Dec 2018. DOI: 10.1371/journal.pone.0207908
Categories:
99 Views

A new workflow is proposed to update the intraoperative electron radiotherapy (IOERT) planning refreshing the position and orientation (pose) of a virtual applicator with respect to the preoperative computed tomography (CT) with the actual pose during surgery. The workflow proposed relies on a robust registration of the preoperative CT and intraoperative projection radiographs acquired with a C-arm system. The workflow initially performs a geometric calibration of the C-arm using fiducials placed on the applicator.

Instructions: 

These are the raw data and some preliminary data retrieved from them.

Categories:
10 Views

A fundamental building block of any computer-assisted interventions (CAI) is the ability to automatically understand what the surgeons are performing throughout the surgery. In other words, recognizing the surgical activities being performed or the tools being used by the surgeon can be deemed as an essential steps toward CAI. The main motivation for these tasks is to design efficient solutions for surgical workflow analysis. The CATARACTS dataset was proposed in this context. This dataset consists of 50 cataract surgery.

Instructions: 

The dataset consists of 50 videos of cataract surgeries performed in Brest University Hospital. Patients were 61 years old on average (minimum: 23,maximum: 83,standard deviation: 10). Each surgery was recorded in two videos: the microscope video and the surgical tray video. The frame definition was 1920x1080 pixels (full HD resolution) for both types of videos. The frame rate was approximately 30 frames per second for the tool-tissue interaction videos and 50 frames per second for the surgical tray videos. Microscope videos had a duration of 10 minutes and 56 s on average (minimum: 6 minutes 23 s, maximum: 40 minutes 34 s, standard deviation:6 minutes 5 s). Surgical tray videos had a duration of 11 minutes and 3 s on average (minimum: 6 minutes 30 s, maximum: 40 minutes 48 s, standard deviation: 6 minutes 3 s). In total, more than nine hours of surgery (for each video type) have been video recorded. For more details about the dataset and the different tasks proposed, please refer to the links provided in the abstract.

Please note that the evaluation scripts (for the microscope test set) used in the challenges are available now. For CATARACTS 2018, in addition to the videos, we provide the images (images.zip) used in the challenge and the ground truth.

If you use this dataset, please cite the following paper:
Al Hajj, Hassan, et al. "CATARACTS: Challenge on automatic tool annotation for cataRACT surgery." Medical image analysis 52 (2019): 24-41.

Categories:
201 Views

Computer-assisted intraoperative intraocular lens (IOL) positioning and alignment is a valuable study. It is important to precisely position and align the axis of IOL during surgery to achieve optimal post-operative astigmatism correction. The cataract surgery dataset is proposed in the research paper “Computer-aided Intraoperative Toric Intraocular Lens Positioning and Alignment During Cataract Surgery”.

Categories:
329 Views

TEST6

Instructions: 

TEST

Categories:
61 Views

There is an unmet need for quick, physically small, and cost-effective office-based techniques that can measure bone properties without the use of ionizing radiation. The present study reports application of a neural network classifier to the processing of previously collected data on very low power radiofrequency propagation through the wrist with the goal to detect osteoporotic/osteopenic conditions. Our approach categorizes the data obtained for two dichotomic groups. Group 1 included 27 osteoporotic/osteopenic subjects with low BMD (DXA T score below - 1) measured within one year.

Categories:
70 Views

The dataset is divided into two sub-folders - 'source' and 'target'. The 'source' folder has a total of 4,080 images of Chest X-rays. The 'target' folder has a total of 4,080 Dual-Energy subtracted images corresponding to the images present in 'source' folder.

Instructions: 

Detailed documentation is provided in the following link: https://github.com/hmchuong/ML-BoneSuppression

Categories:
64 Views

Pages