Making use of a specifically designed SW tool, the authors here presents the results of an activity for the evaluation of energy consumption of buses for urban applications. Both conventional and innovative transport means are considered to obtain interesting comparative conclusions. The SW tool simulates the dynamical behaviour of the vehicles on really measured paths making it possible to evaluate their energetic performances on a Tank to Wheel (TTW) basis. Those data, on such a wide and comparable range were still unavailable in literature.


The dataset contains fundamental approaches regarding modeling individual photovoltaic (PV) solar cells, panels and combines into array and how to use experimental test data as typical curves to generate a mathematical model for a PV solar panel or array.



This dataset contain a PV Arrays Models Pack with some models of PV Solar Arrays carried out in Matlab and Simulink. The PV Models are grouped in three ZIP files which correspond to the papers listed above.


The work starts with a short overview of grid requirements for photovoltaic (PV) systems and control structures of grid-connected PV power systems. Advanced control strategies for PV power systems are presented next, to enhance the integration of this technology. The aim of this work is to investigate the response of the three-phase PV systems during symmetrical and asymmetrical grid faults.


1. Open the "Banu_power_PVarray_grid_EPE2014_.slx" file with Matlab R2014a 64 bit version or a newer Matlab release. 2. To simulate various grid faults on PV System see the settings of the "Fault" variant subsystem block (Banu_power_PVarray_grid_EPE2014_/20kV Utility Grid/Fault) in Model Properties (File -> Model Properties -> Model Properties -> Callbacks -> PreLoadFcn* (Model pre-load function)):           MPPT_IncCond=Simulink.Variant('MPPT_MODE==1')           MPPT_PandO=Simulink.Variant('MPPT_MODE==2')           MPPT_IncCond_IR=Simulink.Variant('MPPT_MODE==3')           MPPT_MODE=1           Without_FAULT=Simulink.Variant('FAULT_MODE==1')           Single_phases_FAULT=Simulink.Variant('FAULT_MODE==2')           Double_phases_FAULT=Simulink.Variant('FAULT_MODE==3')           Double_phases_ground_FAULT=Simulink.Variant('FAULT_MODE==4')           Three_phases_FAULT=Simulink.Variant('FAULT_MODE==5')           Three_phases_ground_FAULT=Simulink.Variant('FAULT_MODE==6')           FAULT_MODE=1 3. For more details about the Variant Subsystems see the Matlab Documentation Center: or


The power flow is usually formulated by nonlinear equations and may present multiple solutions. However, most of these solutions do not represent a practical situation but are mathematical findings. Remarkably, in unbalanced multiphase systems with impedance-grounded loads, a phenomenon can occur where two or more solutions may especially show practical significance. These solutions are called operationally-stable solutions (solutions which for a given loading level the nodal voltages, currents, and losses are feasible) and may be obtained in Distribution Systems (DS).


The data set contains electrical and mechanical signals from experiments on three-phase induction motors. The experimental tests were carried out for different mechanical loads on the induction motor axis and different severities of broken bar defects in the motor rotor, including data regarding the rotor without defects. Ten repetitions were performed for each experimental condition.


The bench of experiments is on the premises of the School of Engineeringof São Carlos (EESC) of the University of São Paulo (USP), Brazil, more specifically in theLaboratory of Intelligent Automation of Processes and Systems (LAIPS) and Laboratory ofIntelligent Control of Electrical Machines (LACIME).

The three-phase induction motor is a model of the W22 standard line from manufacturer WEG, 1 cv, 220V / 380V, 3.02A / 1.75A, 4 poles, 60 Hz, with a nominal torque of 4.1 N.m and nominal speed of 1715 rpm. The rotor is a squirrel cage type made up of 34 bars. It is driven by means of a control panel that allows the selection of the type of drive, star or triangle, and the type of supply, direct mains voltage or via a three-phase inverter.

The rotary torque wrench used in the research is the Transtec model MT-103, with a maximum rotation of 2000 rpm, based on Wheatstone bridge technology and with a sensitivity of 2 mV / V. Its main function is to allow visualization of the torque present in the shaft, which will be varied simulating various operating conditions of the induction motor.

Manual adjustment of the resistant torque is done by varying the field winding voltage of the direct current generator. Therefore, to reduce the magnitude of the grid voltage, a 1800W single-phase voltage variation is used by Variac, and to convert the alternating voltage to continuous, a single-phase rectifier is used which feeds the field winding.

The vibration sensors used were Vibrocontrol uniaxial accelerometers, model PU 2001, with sensitivity of 10 mV / mm / s, frequency range 5 to 2000 Hz and stainless-steel housing, which provides the integrated acceleration signal over time. , ie provides the measure of vibration velocity. In total five accelerometers were used simultaneously, located non-drive end side motor, drive end side motor, housing, in the axial direction of the motor, and on the support desk. Therefore, these monitoring points allow the measurement of axial, tangential and radial velocity.

The currents were measured using alternating current probes, which correspond to precision meters, with a capacity of up to 50 A RMS, with an output voltage of 10 mV / A, corresponding to the Yokogawa model 96033. The voltages were measured directly at the MIT terminals using oscilloscope voltage tips also from the manufacturer Yokogawa.

To simulate the failure of broken bars in the squirrel cage rotor of the three-phase induction motor it was necessary to drill the rotor. Drilling was carried out by means of a bench drill mounted with a 6 mm diameter drill to ensure that the diameter of the hole exceeds the width of a rotor bar, with the tip centered at half the longitudinal length of the rotor.

Since in a real situation the breaking rotor bars are usually adjacent to the first broken bar, 4 rotors were tested, the first with one broken bar, the second with two adjacent broken bars, and so on to the rotor containing four adjacent bars. broken . It is worth mentioning that the hub depth of all tested rotors was the same, corresponding to 20 mm.

Thus, a rotor without a hole was tested first, that is, a healthy rotor, and then it was successively replaced in order to obtain a database of monitored variables.

Experiments were carried out using the bench mentioned above for the construction of the database. Tests were carried out on healthy motors and motors with defects in direct start with balanced three-phase supply voltage and 60 Hz frequency.

For the preparation of a reliable database, enabling future work were applied 0.5nm shipments, 1,0Nm, 1,5Nm, 2,0Nm, 2,5Nm, 3,0Nm, 3,5Nm, and 4.0Nm to the axis of the three-phase induction motor. For each loading condition of the motor shaft, ten repetitions were performed.

In this way, using the data acquisition system, for each experiment of each loading, the following variables were acquired:

·         voltages in phases A, B, and C;

·         currents in phases A, B, and C;

·         mechanical vibration speeds tangential in the housing, tangential in the base, axial on the driven side, radial on the driven side, and radial on the non-drive side.

This experimental process was performed for the detection and diagnosis of failures for healthy engines and engines with rotors containing 1, 2, 3, and 4 bars broken adjacent.

The database is organized as a structure of the Matlab application. The “struct_rs_R1” structure presents the experimental data referring to the defectless induction motor, “struct_r1b_R1” referring to the rotor with one broken bar, “struct_r2b_R1” referring to the rotor with two broken bars, “struct_r3b_R1” referring to the rotor with three broken bars and “Struct_r4b_R1” for the rotor with four broken bars.

When loading the files containing the experimental data for each structure in the Matlab application, it will be possible to view the experimental data for each of the mechanical loads imposed on the motor shaft. Then, it will be possible to observe the experimental data for each monitored variable.


The objective of this research was to propose an insulated gate driver topology for medium voltage application using a single isolated structure. The proposed approach transmits both power and control signal guarantying a reduction of the circuit complexity compared to other solutions.


This data set is shared to help the readers to reproduce the results of the manuscript entitled ‘’Online System Identification of a Fuel Cell Stack with Guaranteed Stability for Energy Management Applications’’ submitted to IEEE Transactions on Energy Conversion.


In this paper, a web-based application for DC Railways networks analysis is presented. The paper provides the guidelines to develop an integrated simulation framework containing different elements like server, databases, visual analytic tools using open-source software. In this case, the proposed application allows to design a DC railway feeding system and analyse the impact of the different agents like vehicles, substations, overhead feeding systems, on-board and wayside energy storage systems, etc.


This dataset contains a demonstrations of creating and simulating a DC Railway network


Imagine you just moved to your brand-new home and hired your energy provider. They tell you that based on the provided information they will set up a direct debit of €50/month. However, at the end of the year, that prediction was not quite accurate, and you end up paying a settlement amount of €300, or if you are lucky, they give you back some money. Either way, you will probably be disappointed with your energy provider and might consider moving on to another one.

Last Updated On: 
Mon, 09/07/2020 - 11:46

Dataset of the signals monitored in a typical overfeed refrigeration system. The system is composed of two compressors in parallel, four evaporative condensers and various evaporators distributed in the different spaces to refrigerate. The dataset contains variables from all the main components of the refrigeration system such as the compressors, the condensers and the evaporators, with additional information about the outdoor temperature, the temperature of the refrigerated spaces and all the set points.