Computational Intelligence
“DCA-IoMT Dataset” belongs to the research article entitled “DCA-IoMT: Knowledge Graph Embedding-enhanced Deep Collaborative Alerts-recommendation against COVID19 (DOI: 10.1109/TII.2022.3159710)” accepted for publication in the Journal of IEEE Transactions on Industrial Informatics.
- Categories:
Study of mind and nature of intelligence is widely studied in cognitive science. Also, Artificial Wisdom which redefines the Artificial Wisdom is emerging research area where machine intelligence must collaborates with the constructive behavior and values of humanity. Thinking ability of human beings is recognized as the consciousness. Researchers from different domains like Cognitive Science, Artificial Intelligence, Psychology, Computer Engineering etc. are used to perform experimentations on consciousness or arousal of thoughts.
- Categories:
There exist several commonly used datasets in relation to object detection that include COCO (with multiple versions) and ImageNet containing large annotations for 80 and 1000 objects (i.e. classes) respectively. However, very limited datasets are available comprising specific objects identified by visually imapeired people (VIP) such as wheel-bins, trash-Bags, e-Scooters, advertising boards, and bollard. Furthermore, the annotations for these objects are not available in existing sources.
- Categories:
Abstract:
will be uploaded later
- Categories:
Human intention is an internal, mental characterization for acquiring desired information. From
interactive interfaces, containing either textual or graphical information, intention to perceive desired
information is subjective and strongly connected with eye gaze. In this work, we determine such intention by
analyzing real-time eye gaze data with a low-cost regular webcam. We extracted unique features (e.g.,
Fixation Count, Eye Movement Ratio) from the eye gaze data of 31 participants to generate the dataset
- Categories:
This dataset is composed by both real and sythetic images of power transmission lines, which can be fed to deep neural networks training and applied to line's inspection task. The images are divided into three distinct classes, representing power lines with different geometric properties. The real world acquired images were labeled as "circuito_real" (real circuit), while the synthetic ones were identified as "circuito_simples" (simple circuit) or "circuito_duplo" (double circuit). There are 348 total images for each class, 232 inteded for training and 116 aimed for validation/testing.
- Categories: