Computational Intelligence

Invasive lobular carcinoma (ILC) is the second most prevalent histologic subtype of invasive breast cancer. Here, we comprehensively profiled 817 breast tumors, including 127 ILC, 490 ductal (IDC), and 88 mixed IDC/ILC. Besides E-cadherin loss, the best known ILC genetic hallmark, we identified mutations targeting PTEN, TBX3 and FOXA1 as ILC enriched features. PTEN loss associated with increased AKT phosphorylation, which was highest in ILC among all breast cancer subtypes. Spatially clustered FOXA1 mutations correlated with increased FOXA1 expression and activity.

Categories:
602 Views

This dataset contains the results of the simulation runs of the experiments performed to evaluate and compare the proposed spatial model for situated multi-agent systems. The model was introduced in a paper entitled "BioMASS, a spatial model for situated multiagent systems that optimizes neighborhood search". In this paper we presented a new model to implement a spatially explicit environment that supports constant-time sensory (neighborhood search) and locomotion functions for situated multiagent systems.

Categories:
177 Views

A Indústria enfrenta desafios graves e fracassa sem competitividade. Atacando esta problemática, conferiu-se o oferecimento de maior eficiência a processos industriais para promover a produtividade, elevar a qualidade e impulsionar mudanças. A solução desenvolvida incluiu dispositivos com sensores não invasivos, simples de instalar, que contabilizam os itens sendo transportados em linhas de produção.

Categories:
829 Views

Imagine you just moved to your brand-new home and hired your energy provider. They tell you that based on the provided information they will set up a direct debit of €50/month. However, at the end of the year, that prediction was not quite accurate, and you end up paying a settlement amount of €300, or if you are lucky, they give you back some money. Either way, you will probably be disappointed with your energy provider and might consider moving on to another one. Predicting energy consumption is currently a key challenge for the energy industry as a whole.

Last Updated On: 
Tue, 07/20/2021 - 06:35

Demonstrating dataset used in one of the experiments.

Categories:
115 Views

Each voice sample is stored as a .WAV file, which is then pre-processed for acoustic analysis using the specan function from the WarbleR R package. Specan measures 22 acoustic parameters on acoustic signals for which the start and end times are provided.

The output from the pre-processed WAV files were saved into a CSV file, containing 3168 rows and 21 columns (20 columns for each feature and one label column for the classification of male or female).

Categories:
1314 Views

Dataset asscociated with a paper in IEEE Transactions on Pattern Analysis and Machine Intelligence

"The perils and pitfalls of block design for EEG classification experiments"

DOI: 10.1109/TPAMI.2020.2973153

If you use this code or data, please cite the above paper.

Categories:
1512 Views

The project is conceptualized to 'Geo Web-Based Facility Mapping for Zone-2 in Greater Visakhapatnam Municipal Corporation- GVMC in Visakhapatnam, India'. The main objective is to share the spatial data to the public to help them find the information about the nearest Hospital, ATM, Educational institutions, petrol filling stations, and supermarkets by providing both web map services and web coverage services using QGIS Cloud.

Categories:
613 Views

This dataset is composed of 4-Dimensional time series files, representing the movements of all 38 participants during a novel control task. In the ‘5D_Data_Extractor.py’ file this can be set up to 6-Dimension, by the ‘fields_included’ variable. Two folders are included, one ready for preprocessing (‘subjects raw’) and the other already preprocessed ‘subjects preprocessed’.

Categories:
302 Views

We develop a general group-based continuous-time Markov epidemic model (GgroupEM) framework for any compartmental epidemic model (e.g., susceptible-infected-susceptible, susceptible-infected-recovered, susceptible-exposed-infected-recovered). Here, a group consists of a collection of individual nodes of a network. This model can be used to understand the critical dynamic characteristics of a stochastic epidemic spreading over large complex networks while being informative about the state of groups.

Categories:
195 Views

Pages