The dataset contains fundamental approaches regarding modeling individual photovoltaic (PV) solar cells, panels and combines into array and how to use experimental test data as typical curves to generate a mathematical model for a PV solar panel or array.

 

Instructions: 

This dataset contain a PV Arrays Models Pack with some models of PV Solar Arrays carried out in Matlab and Simulink. The PV Models are grouped in three ZIP files which correspond to the papers listed above.

Categories:
8749 Views

The work starts with a short overview of grid requirements for photovoltaic (PV) systems and control structures of grid-connected PV power systems. Advanced control strategies for PV power systems are presented next, to enhance the integration of this technology. The aim of this work is to investigate the response of the three-phase PV systems during symmetrical and asymmetrical grid faults.

Instructions: 

1. Open the "Banu_power_PVarray_grid_EPE2014_.slx" file with Matlab R2014a 64 bit version or a newer Matlab release. 2. To simulate various grid faults on PV System see the settings of the "Fault" variant subsystem block (Banu_power_PVarray_grid_EPE2014_/20kV Utility Grid/Fault) in Model Properties (File -> Model Properties -> Model Properties -> Callbacks -> PreLoadFcn* (Model pre-load function)):           MPPT_IncCond=Simulink.Variant('MPPT_MODE==1')           MPPT_PandO=Simulink.Variant('MPPT_MODE==2')           MPPT_IncCond_IR=Simulink.Variant('MPPT_MODE==3')           MPPT_MODE=1           Without_FAULT=Simulink.Variant('FAULT_MODE==1')           Single_phases_FAULT=Simulink.Variant('FAULT_MODE==2')           Double_phases_FAULT=Simulink.Variant('FAULT_MODE==3')           Double_phases_ground_FAULT=Simulink.Variant('FAULT_MODE==4')           Three_phases_FAULT=Simulink.Variant('FAULT_MODE==5')           Three_phases_ground_FAULT=Simulink.Variant('FAULT_MODE==6')           FAULT_MODE=1 3. For more details about the Variant Subsystems see the Matlab Documentation Center: https://www.mathworks.com/help/simulink/variant-systems.html or https://www.mathworks.com/help/simulink/examples/variant-subsystems.html

Categories:
5528 Views

This document has description of acoustic and vibration data of defect cases of centrifugal pump,  Test rig facility, sensor, and data acquisition device located at Precision Metrology Laboratory, Mechanical Engineering Department of Sant Longowal Institute of Engineering and Technology Longowal, India.  

Categories:
803 Views

Pipaset preveiw is linked with pipaset and TEAS Multimodal dataset and annotation system automatic music transcription and expressionness analysis  dedicated to Chinese music instrument pipa. This dataset 

Categories:
16 Views

The dataset consists of three parts, the first part consists of single notes and playing technique samples, and the second includes the triple viewed video, steoro-microphone recordings and 4 track optical vibration recordings in raw file for famous Chinese Folk music ‘Jasmine Flower’ and the first section of ‘Ambush from ten sides’. The third part concerns about the source separated tracks from optical recordings and expressive annotation files are included in the annotation files.

Categories:
19 Views

Clamp-on ultrasonic transit time difference flow meters provide opportunities for metering where it is impractical or undesirable to cut into an existing pipeline to install an alternative flow meter. Up until now, it has been difficult to perform this type of measurement on thin-walled metal pipes, due to the difficulty of interpreting the guided wave modes in the combined pipe wall and internal fluid system, but a new method has been reported recently that utilises these guided wave modes for flow measurement.

Categories:
16 Views

One of the weak points of most of denoising algoritms (deep learning based ones) is the training data. Due to no or very limited amount of groundtruth data available, these algorithms are often evaluated using synthetic noise models such as Additive Zero-Mean Gaussian noise. The downside of this approach is that these simple model do not represent noise present in natural imagery. For evaluation of denoising algorithms’ performance in poor light conditions, we need either representative models or real noisy images paired with those we can consider as groundtruth.

Categories:
55 Views

The C3I Thermal Automotive Dataset provides > 35,000 distinct frames along with annotated thermal frames for the development of smart thermal perception system/ object detection system that will enable the automotive industry and researchers to develop safer and more efficient ADAS and self-driving car systems. The overall dataset is acquired, processed, and open-sourced in challenging weather and environmental scenarios. The dataset is recorded from a lost-cost yet effective 640x480 uncooled LWIR thermal camera.

Categories:
389 Views

A synthetic dataset designed to evaluate transfer learning performance for RF domain adaptation in the publication Assessing the Value of Transfer Learning Metrics for RF Domain Adaptation. The dataset contains a total of 13.8 million examples, with 600k examples each of 22 modulation schemes (given below) and AWGN noise (200k each for training, validation, and testing); 512 raw IQ samples per example.

Instructions: 

This dataset was generated using Python wrappers around liquid-dsp (https://github.com/jgaeddert/liquid-dsp), and is saved in SigMF format such that each example is saved in an individual ‘.sigmf-data’ file with an associated ‘.sigmf-meta’ file  of the same name. The ‘.sigmf-data’ file contains the interleaved raw IQ samples in binary format and can be read using the numpy.load() function. The ‘.sigmf-meta’ file contains all metadata parameters used to generate the example including the number of samples, modulation type, signal-to-noise ratio, frequency offset, and filtering parameters, is in json format ,and can be read using json.load(). Further details and code examples for loading the dataset can be found at https://github.com/gnuradio/SigMF

Categories:
111 Views

This is the First Arabic voice Commands Dataset to provide personalized control of devices at smart homes for elder persons and persons with disabilities. The dataset contains 12 speakers, each saying 36 different phrases or words in Arabic language. The goal of this dataset is to use it in an Arabic smart home system to control home devices through voice. Participants were asked to say each phrase multiple times. The phrases to record were presented in a random order.

Categories:
353 Views

Pages