Sensors
Academic spaces are an environment that promotes student performance not only because of the quality of its equipment, but also because of its ambient comfort conditions, which can be controlled by means of actuators that receive data from sensors. Something similar can be said about other environments, such as home, business, or industry environment. However, sensor devices can cause faults or inaccurate readings in a timely manner, affecting control mechanisms. The mutual relationship between ambient variables can be a source of knowledge to predict a variable in case a sensor fails.
- Categories:
Dataset of V2V (vehicle to vehicle communication), GPS, inertial and WiFi data collected during a road vehicle trip in the city of Porto, Portugal. Four cars were driven along the same route (approx. 12 km), facing everyday traffic conditions with regular driving behavior. No special environments or settings were chosen, other than keeping the vehicles in communication reach of each other for as long as possible while being safe and compliant with the road rules.
- Categories:

The downloadable files contain all data and associated scripts that generate results as seen in the article. The major component description and detailed setup and run instructions are also provided in the README file.
- Categories:

A Traffic Light Controller PETRI_NET (Finite State Machine) Implementation.
An implementation of FSM approach can be followed in systems whose tasks constitute a well-structured list so all states can be easily enumerated. A Traffic light controller represents a relatively complex control function
- Categories:
Dataset of GPS, inertial and WiFi data collected during road vehicle trips in the district of Porto, Portugal. It contains 40 trip datasets collected with a smartphone fixed on the windshield or dashboard, inside the road vehicle. The dataset was collected and used in order to develop a proof-of-concept for "MagLand: Magnetic Landmarks for Road Vehicle Localization", an approach that leverages magnetic anomalies created by existing road infrastructure as landmarks, in order to support current vehicle localization system (e.g. GNSS, dead reckoning).
- Categories:
This dataset features cooking activities with recipes and gestures labeled. The data has been collected using two smartphones (right arm and left hip), two smartwatches (both wrists) and one motion capture system with 29 markers. There were 4 subjects who prepared 3 recipes (sandwich, fruit salad, cereal) 5 times each. The subjects followed a script for each recipe but acted as naturally as possible
- Categories: