A qualitative and quantitative extension of the chaotic models used to generate self-similar traffic with long-range dependence (LRD) is presented by means of the formulation of a model that considers the use of piecewise affine onedimensional maps. Based on the disaggregation of the temporal series generated, a valid explanation of the behavior of the values of Hurst exponent is proposed and the feasibility of their control from the parameters of the proposed model is shown.

Instructions: 

fGn series used for simulations in the article "Sobre la Generación de Tráfico Autosimilar con Dependencia de Largo Alcance Empleando Mapas Caóticos Unidimensionales Afines por Tramos (Versión Extendida)", "On the Generation of Self-similar with Long-range Dependent Traffic Using Piecewise Affine Chaotic One-dimensional Maps (Extended Version)". Available at:

https://arxiv.org/abs/2104.04135.

https://easychair.org/publications/preprint/Xwx3.

https://osf.io/dsnke/.

They should be used in MATLAB R2009a.

Categories:
22 Views

This article explores the required amount of time series points from a high-speed computer network to accurately estimate the Hurst exponent. The methodology consists in designing an experiment using estimators that are applied to time series addresses resulting from the capture of high-speed network traffic, followed by addressing the minimum amount of point required to obtain in accurate estimates of the Hurst exponent.

Instructions: 

fGn series used for simulations in the article "Preliminaries on the Accurate Estimation of the Hurst Exponent Using Time Series".  Available at:

https://arxiv.org/abs/2103.02091.

https://www.techrxiv.org/articles/preprint/Preliminaries_on_the_Accurate....

https://easychair.org/publications/preprint/RQsp.

https://osf.io/3sk7a/.

They should be used in Selfis01b.

Categories:
90 Views

Dataset asscociated with a paper in Computer Vision and Pattern Recognition (CVPR)

 

"Object classification from randomized EEG trials"

 

If you use this code or data, please cite the above paper.

Instructions: 

See the paper "Object classification from randomized EEG trials" on IEEE Xplore.

 

Code for analyzing the dataset is included in the online supplementary materials for the paper.

 

The code from the online supplementary materials is also included here.

 

If you use this code or data, please cite the above paper.

Categories:
143 Views

We provide a public available database for arcing event detection. We design a platform for arcing fault simulation. The arc simulation is carried out in our local lab under room temperature. A general procedure to collect the arcing and normal current and voltage wave, is designed, which consists of turning on the load, generating arc, stoping arc, turning off the load. The data is collected by a 16bit, 10KHz high resolution recorder and a 12bit, 64000Hz low resolution sensor.

Categories:
72 Views

This file is collected from a tool holder with four stain gauges for detecting machining variation in a machine tool. The associated collected signal data and description will be provided soon. 

Categories:
85 Views

The dataset is composed of digital signals obtained from a capacitive sensor electrodes that are immersed in water or in oil. Each signal, stored in one row, is composed of 10 consecutive intensity values and a label in the last column. The label is +1 for a water-immersed sensor electrode and -1 for an oil-immersed sensor electrode. This dataset should be used to train a classifier to infer the type of material in which an electrode is immersed in (water or oil), given a sample signal composed of 10 consecutive values.

Instructions: 

The dataset is acquired from a capacitive sensor array composed of a set of sensor electrodes immersed in three different phases: air, oil, and water. It is composed of digital signals obtained from one electrode while it was immersed in the oil and water phases at different times. 

## Experimental setup

The experimental setup is composed of a capacitive sensor array that holds a set of sensing cells (electrodes) distributed vertically along the sensor body (PCB). The electrodes are excited sequentially and the voltage (digital) of each electrode is measured and recorded. The voltages of each electrode are converted to intensity values by the following equation:

intensity = ( |Measured Voltage - Base Voltage| / Base Voltage ) x 100

Where the Base Voltage is the voltage of the electrode recorded while the electrode is immersed in air. The intensity values are stored in the dataset instead of the raw voltage values.

## Experimental procedure 

The aim of the experiments is to get fixed-size intensity signals from one electrode (target electrode) when being immersed in water and oil; labeled as +1 (water) or -1 (oil). For this purpose, the following procedure was applied:

- The linear actuator was programmed to move the sensor up and down at a constant speed (20 mm / second).

- The actuator stops when reaching the upper and bottom positions for a fixed duration of time (60 seconds).

- At the upper position, the target electrode is immersed in oil; intensity signals are labeled -1 and sent to the PC.

- At the bottom position, the target electrode is immersed in water; intensity signals are labeled +1 and sent to the PC.

- The sampling rate is 100 msec; since each intensity signal contains 10 values, it takes 1 second to record one intensity signal 

## Environmental conditions

The experiments were perfomed under indoors laboratory conditions with room temperature of around 23 degree Celsius. 

## Dataset structure 

The signals included in the dataset are composed of intensity signals each with 10 consecutive values and a label in the last column. The label is +1 for a water-immersed electrode and -1 for an oil-immersed electrode.

## Application

The dataset should be used to train a classifier to differentiate between electrodes immersed in water and oil phases given a sample signal.

Categories:
602 Views
  • Graph x and Y in ABS experiment

Categories:
40 Views

The data set contains electrical and mechanical signals from experiments on three-phase induction motors. The experimental tests were carried out for different mechanical loads on the induction motor axis and different severities of broken bar defects in the motor rotor, including data regarding the rotor without defects. Ten repetitions were performed for each experimental condition.

Instructions: 

Experimental Setup:

The experimental workbench consists of a three-phase induction motor coupled with a direct-current machine, which works as a generator simulating the load torque, connected by a shaft containing a rotary torque wrench.

- Induction motor: 1hp, 220V/380V, 3.02A/1.75A, 4 poles, 60 Hz, with a nominal torque of 4.1 Nm and a rated speed of 1715 rpm. The rotor is of the squirrel cage type composed of 34 bars.

- Load torque: is adjusted by varying the field winding voltage of direct current generator. A single-phase voltage variator with a filtered full-bridge rectifier is used for the purpose. An induction motor was tested under 12.5, 25, 37.5, 50, 62.5, 75, 87.5 and 100% of full load.

- Broken rotor bar: to simulate the failure on the three-phase induction motor's rotor, it was necessary to drill the rotor. The rupture rotor bars are generally adjacent to the first rotor bar, 4 rotors have been tested, the first with a break bar, the second with two adjacent broken bars, and so on rotor containing four bars adjacent broken.

Monitoring condition:

All signals were sampled at the same time for 18 seconds for each loading condition and ten repetitions were performed from transient to steady state of the induction motor.

- mechanical signals: five axial accelerometers were used simultaneously, with a sensitivity of 10 mV/mm/s, frequency range from 5 to 2000Hz and stainless steel housing, allowing vibration measurements in both drive end (DE) and non-drive end (NDE) sides of the motor, axially or radially, in the horizontal or vertical directions.

- electrical signals: the currents were measured by alternating current probes, which correspond to precision meters, with a capacity of up to 50ARMS, with an output voltage of 10 mV/A, corresponding to the Yokogawa 96033 model. The voltages were measured directly at the induction terminals using voltage points of the oscilloscope and the manufacturer Yokogawa.

Data Set Overview:

-          Three-phase Voltage

-          Three-phase Current

-          Five Vibration Signals

 

Acknowledgements:

            The database was acquired in the Laboratory of Intelligent Automation of Processes and Systems and Laboratory of Intelligent Control of Electrical Machines, School of Engineering of São Carlos of the University of São Paulo (USP), Brazil.

Categories:
2734 Views

We introduce a new database of voice recordings with the goal of supporting research on vulnerabilities and protection of voice-controlled systems (VCSs). In contrast to prior efforts, the proposed database contains both genuine voice commands and replayed recordings of such commands, collected in realistic VCSs usage scenarios and using modern voice assistant development kits.

Instructions: 

The corpus consists of three sets: the core, evaluation, and complete set. The complete set contains all the data (i.e., complete set = core set + evaluation set) and allows the user to freely split the training/test set. Core/evaluation sets suggest a default training/test split. For each set, all *.wav files are in the /data directory and the meta information is in meta.csv file. The protocol is described in the readme.txt. A PyTorch data loader script is provided as an example of how to use the data. A python resample script is provided for resampling the dataset into the desired sample rate.

Categories:
443 Views

Dataset asscociated with a paper in IEEE Transactions on Pattern Analysis and Machine Intelligence

"The perils and pitfalls of block design for EEG classification experiments"

DOI: 10.1109/TPAMI.2020.2973153

If you use this code or data, please cite the above paper.

Instructions: 

See the paper "The perils and pitfalls of block design for EEG classification experiments" on IEEE Xplore.

DOI: 10.1109/TPAMI.2020.2973153

Code for analyzing the dataset is included in the online supplementary materials for the paper.

The code and the appendix from the online supplementary materials are also included here.

If you use this code or data, please cite the above paper.

Categories:
444 Views

Pages