We design a solution to achieve coordinated localization between two unmanned aerial vehicles (UAVs) using radio and camera perception. We achieve the localization between the UAVs in the context of solving the problem of UAV Global Positioning System (GPS) failure or its unavailability. Our approach allows one UAV with a functional GPS unit to coordinate the localization of another UAV with a compromised or missing GPS system. Our solution for localization uses a sensor fusion and coordinated wireless communication approach.


This dataset inludes a nonlinear disturbance observer (NDOB)-based controller for attitude and altitude control of a quadrotor. The NDOB is used to estimate and compensate disturbances that are imposed naturally on the quadrotor due to aerodynamics and parameter uncertainties. It is demonstrated herein that the proposed observer can estimate external disturbances asymptotically.


The DroneDetect dataset consists of 7 different models of popular Unmanned Aerial Systems (UAS) including the new DJI Mavic 2 Air S, DJI Mavic Pro, DJI Mavic Pro 2, DJI Inspire 2, DJI Mavic Mini, DJI Phantom 4 and the Parrot Disco. Recordings were collected using a Nuand BladeRF SDR and using open source software GNURadio. There are 4 subsets of data included in this dataset, the UAS signals in the presence of Bluetooth interference, in the presence of Wi-Fi signals, in the presence of both and with no interference.



GPS spoofing and jamming are common attacks against the UAV, however, conducting these experiments for research can be difficult in many areas. This dataset consists of a logs from a benign flight as well as one where the UAV experiences GPS spoofing and jamming. The Keysight EXG N5172B signal generator is used to provide the true coordinates as a location in Shanghai, China.


This dataset is in support of my 3 research papers - 'Comparative Analysis of Non-Linear Kalman in 8RC ECM of 72Ah LIB - Part I', ' Comparative Analysis of Non-Linear Kalman in 8RC ECM of 72Ah LIB - Part II' , and 'Comparative Analysis of Non-Linear Kalman in 8RC ECM of 72Ah LIB - Part III'. 

Preprint :