Computational Intelligence
Modern automotive embedded systems include a large number of electronic control units (ECU) responsible for managing sophisticated systems such as engine control, ABS brake systems, traction control, and power steering systems. To ensure the reliability and effectiveness of these functions, it is essential to apply rigorous test approaches and standards. The integration of diagnostic functions in automotive embedded systems demands consistent tests and a detailed analysis of data.
- Categories:
This is a dataset about minimizing maritime passenger transfer in ship routing. Consists of data on the distance between ports, the number of passengers from the port of origin to the port of destination, ships speed, and the duration of berthing at ports.
- Categories:
Existing end-to-end congestion control algorithms, in Transmission Control Protocol (TCP), use packet loss and queueing delay for congestion detection, and use static control laws to adjust the sending rate and to control the congestion. This approach presupposes that the network, and its interaction with the congestion control mechanism, is static or quasi-static. In practice, the state of the network continuously changes over time, resulting in suboptimal performance of existing algorithms.
- Categories:
This is a dataset about minimizing maritime passenger transfer in ship routing. consists of data on the distance between ports, the number of passengers from the port of origin to the port of destination, ship speed, and the duration of berthing at ports.
- Categories:
Popularity of smartphones also popularized, reading content using smartphones. Reading using smartphones quite differs from reading using desktop system. Mouse and Keyboard are the peripherals associated with the reading in desktop systems. Study of the handling of such devices has led to provide implicit feedback of the content read. Similar study in smartphones to get implicit feedback remains to be a huge gap. Reading using smartphones involves screen gestures like pinch to zoom, tap, scroll, orientation change and screen capture.
- Categories:
This dataset comprises audio recordings of ultra-high-frequency ambient noise stored in the lossless waveform format (WAW). The recordings were sampled at a frequency sample rate of 2.048 MHz and then provided at a downsampled audio rate of 48 kHz for compatibility and practical usage. The total length of the dataset is 01:30:29, consisting of approximately 260 million data points. (2024-03-30)
- Categories:
To access this dataset without purchasing an IEEE Dataport subscription, please visit: https://zenodo.org/doi/10.5281/zenodo.11711229
Please cite the following paper when using this dataset:
- Categories:
The "Thaat and Raga Forest (TRF) Dataset" represents a significant advancement in computational musicology, focusing specifically on Indian Classical Music (ICM). While Western music has seen substantial attention in this field, ICM remains relatively underexplored. This manuscript presents the utilization of Deep Learning models to analyze ICM, with a primary focus on identifying Thaats and Ragas within musical compositions. Thaats and Ragas identification holds pivotal importance for various applications, including sentiment-based recommendation systems and music categorization.
- Categories: