Continuous-time signal processing
The TE process dataset consists of a training set and a test set, and the training set and test set data consist of data from 22 different simulation runs, respectively, with each sample data containing 12 manipulated variables, 22 continuous process measurement variables, and 19 component measurement variables. The training set samples are numbered as d00.dat to d21.dat, and the test set samples are numbered as d00_te.dat to d21_te.dat. where d00.dat and d00_te.dat are the samples under normal operating conditions. d00.dat training samples are obtained under 25h running simulation.
- Categories:
ZJT datasets: It was collected from the production line of China Tobacco Zhejiang Industrial Company. The data was sampled every two seconds for a week from 162 sensors deployed on a variety of production devices (e.g., paper cut-ting wheel, power supply, etc.). Since ZJT is a dataset from real-world production line, it does not contain serious anoma-lies from accidents or attacks. Thus, we treat the states of transforming between different producing modes as anoma-lies. The ratio of normal states to abnormal states is 4:1.
- Categories:
Subjects are categorized into three groups based on office blood pressure threshold: Normal (N), Prehypertension (P), and Stage 1 Hypertension (S). Each group contains 100 subjects, and all records have duration of at least 8 minutes. This study uses sliding window with length of 1 second and step size of 1 second to segment records. PPG, ECG and BP yield 167432 segments, respectively. MAP, DBP, and SBP are defined as average, minimum, and maximum of each BP segment, respectively. Max-Min normalization is applied to PPG and ECG segments.
- Categories:
The source code includes the modified version of QuaDRiGa source code, the scritps that we developed to generate the layout and the channel and delay coefficients for the dual mobile space-ground links. We integrate a practical phenomenon in signal reception by employing both a LOS probability model and a state transition model which follows the semi-Markov approach.
- Categories:
In this paper, we propose a dual-loop control strategy to address the problems of the interference by the human-machine interaction of the lower limb exoskeleton movement. The outer ring adopts admittance control and the human-machine interaction torque is estimated by the generalized momentum observer based on Kalman filter. The inner ring adopts PID control based on DDPG.
- Categories:
To achieve improved multi-node temperature estimation with limited training data in Permanent Magnet Synchronous Motors (PMSMs), a novel approach of a Lumped-Parameter Thermal Network (LPTN)-informed neural network is proposed in this paper. Firstly, the parameter and model uncertainties of third or higher-order LPTNs with global parameter identification for temperature estimation are systematically stated based on numerical analysis.
- Categories:
This dataset comprises data from six experimental participants, each undergoing nine walking trials. Each participant engaged in three trials of low-speed walking, three trials of medium-speed walking, and three trials of high-speed walking. The dataset includes multi-channel electromyography (EMG) data and center of pressure/ground reaction force (COP/GRF) data. Specifically, EMG data is utilized to extract muscle coordination activation time coefficients during human walking, and a deep learning model is established based on these coefficients to predict COP/GRF parameters.
- Categories:
The uploaded .ZIP file contains the MATLAB codes used in Examples 1 and 2 of the following paper, which the authors have submitted to an IEEE Journal: Data-Driven Saturated State Feedback Design for Polynomial Systems Using Noisy Data. This is the abstract of the paper: "In this note, the problem of data-driven saturated state feedback design for polynomial nonlinear systems is solved by means of a sum-of-squares (SOS) approach. This new strategy combines recent results in dissipativity theory and data-driven feedback control using noisy input-state data.
- Categories: