Remote sensing of environment research has explored the benefits of using synthetic aperture radar imagery systems for a wide range of land and marine applications since these systems are not affected by weather conditions and therefore are operable both daytime and nighttime. The design of image processing techniques for  synthetic aperture radar applications requires tests and validation on real and synthetic images. The GRSS benchmark database supports the desing and analysis of algorithms to deal with SAR and PolSAR data.

Last Updated On: 
Tue, 11/12/2019 - 10:38
Citation Author(s): 
Nobre, R. H.; Rodrigues, F. A. A.; Rosa, R.; Medeiros, F.N.; Feitosa, R., Estevão, A.A., Barros, A.S.

The detection of settlements without electricity challenge track (Track DSE) of the 2021 IEEE GRSS Data Fusion Contest, organized by the Image Analysis and Data Fusion Technical Committee (IADF TC) of the IEEE Geoscience and Remote Sensing Society (GRSS), Hewlett Packard Enterprise, SolarAid, and Data Science Experts, aims to promote research in automatic detection of human settlements deprived of access to electricity using multimodal and multitemporal remote sensing data.

Last Updated On: 
Thu, 12/03/2020 - 04:16
Citation Author(s): 
Colin Prieur, Hana Malha, Frederic Ciesielski, Paul Vandame, Giorgio Licciardi, Jocelyn Chanussot, Pedram Ghamisi, Ronny Hänsch, Naoto Yokoya

The dataset is a new high-quality dataset to advance sea-land segmentation with high-resolution remote sensing images. The dataset contains 1,726 hand-labeled and cropped Gaofen-1 images with an 8-meter spatial resolution and 4 bands, covering the various types of coastlines in Lianyungang, China.

Instructions: 

The dataset is a new high-quality dataset to advance sea-land segmentation with high-resolution remote sensing images. The dataset contains 1,726 hand-labeled and cropped Gaofen-1 images with an 8-meter spatial resolution and 4 bands, covering the various types of coastlines in Lianyungang, China.

Categories:
6 Views

Wildfires are one of the deadliest and dangerous natural disasters in the world. Wildfires burn millions of forests and they put many lives of humans and animals in danger. Predicting fire behavior can help firefighters to have better fire management and scheduling for future incidents and also it reduces the life risks for the firefighters. Recent advance in aerial images shows that they can be beneficial in wildfire studies. Among different methods and technologies for aerial images, Unmanned Aerial Vehicles (UAVs) and drones are beneficial to collect information regarding the fire. 

Instructions: 

The aerial pile fire detection dataset consists of different repositories. The first one is a raw video recorded using the Zenmuse X4S camera. The format of this file is MP4. The duration of the video is 966 seconds with a Frame Per Second (FPS) of 29. The size of this repository is 1.2 GB. The first video was used for the "Fire-vs-NoFire" image classification problem (training/validation dataset). The second one is a raw video recorded using the Zenmuse X4S camera. The duration of the video is 966 seconds with a Frame Per Second (FPS) of 29. The size of this repository is 503 MB. This video shows the behavior of one pile from the start of burning. The resolution of these two videos is 1280x720.

The third video is 89 seconds of heatmap footage of WhiteHot from the thermal camera. The size of this repository is 45 MB. The fourth one is 305 seconds of GreentHot heatmap with a size of 153 MB. The fifth repository is 25 mins of fusion heatmap with a size of 2.83 GB. All these three thermal videos are recorded by the FLIR Vue Pro R thermal camera with an FPS of 30 and a resolution of 640x512. The format of all these videos is MOV.

The sixth video is 17 mins long from the DJI Phantom 3 camera. This footage is used for the purpose of the "Fire-vs-NoFire" image classification problem (test dataset). The FPS is 30, the size is 32 GB, the resolution is 3840x2160, and the format is MOV.

The seventh repository is 39,375 frames that resized to 254x254 for the "Fire-vs-NoFire" image classification problem (Training/Validation dataset). The size of this repository is 1.3 GB and the format is JPEG.

The eighth repository is 8,617 frames that resized to 254x254 for the "Fire-vs-NoFire" image classification problem (Test dataset). The size of this repository is 301 MB and the format is JPEG.

The ninth repository is 2,003 fire frames with a resolution of 3480x2160 for the fire segmentation problem (Train/Val/Test dataset). The size of this repository is 5.3 GB and the format is JPEG.

The last repository is 2,003 ground truth mask frames regarding the fire segmentation problem. The resolution of each mask is 3480x2160. The size of this repository is 23.4 MB.

For more information please find the Table in 

https://github.com/AlirezaShamsoshoara/Fire-Detection-UAV-Aerial-Image-Classification-Segmentation-UnmannedAerialVehicle

Categories:
219 Views

Here we introduce so-far the largest subject-rated database of its kind, namely, "Effect of Sugarcane vegetation on path-loss between CC2650 and CC2538 SoC 32-bit Arm Cortex-M3 based sensor nodes operating at 2.4 GHz Radio Frequency (RF)".

Categories:
95 Views

Here we introduce so-far the largest subject-rated database of its kind, namely, "Effect of Paddy Rice vegetation on path-loss between CC2650 SoC 32-bit Arm Cortex-M3 based sensor nodes operating at 2.4 GHz Radio Frequency (RF)". This database contains received signal strength measurements collected through campaigns in the IEEE 802.15.4 standard precision agricultural monitoring infrastructure developed for Paddy rice crop monitoring from period 03/07/2019 to 18/11/2019.

Categories:
79 Views

Here we introduce so-far the largest subject-rated database of its kind, namely, "Effect of Paddy Rice vegetation on received signal strength between CC2538 SoC 32-bit Arm Cortex-M3 based sensor nodes operating at 2.4 GHz Radio Frequency (RF)". This database contains received signal strength measurements collected through campaigns in the IEEE 802.15.4 standard precision agricultural monitoring infrastructure developed for Paddy Rice crop monitoring from period 01/07/2020 to 03/11/2020.

Categories:
52 Views

Here we introduce so-far the largest subject-rated database of its kind, namely, "Effect of Millet vegetation on path-loss between CC2538 SoC 32-bit Arm Cortex-M3 based sensor nodes operating at 2.4 GHz Radio Frequency (RF)". This database contains received signal strength measurements collected through campaigns in the IEEE 802.15.4 standard precision agricultural monitoring infrastructure developed for millet crop monitoring from period 03/06/2020 to 04/10/2020.

Categories:
52 Views

This dataset consists of orthorectified aerial photographs, LiDAR derived digital elevation models and segmentation maps with 10 classes, acquired through the open data program of the German state North Rhine-Westphalia (https://www.opengeodata.nrw.de/produkte/) and refined with OpenStreeMap. Please check the license information (http://www.govdata.de/dl-de/by-2-0).

Instructions: 

Dataset description

The data was mostly acquired over urban areas in North-Rhine Westphalia, Germany. Since the acquisition dates for the aerial photographs and LiDAR do not match exactly, there can be discrepancies in what they show and in which season, e.g., trees change their leaves or lose them in autumn. In our experience, these differences are not drastic but should be kept in mind.

We have included two Python scripts. plot_examples.py creates the example image used on this website. calc_and_plot_stats.py calculates and plots the class statistics. Furthermore, we published the code to create the dataset at https://github.com/gbaier/geonrw, which makes it easy to extend the dataset with other areas in North-Rhine Westphalia. The repository also contains a PyTorch data loader.

This multimodal dataset should be useful for a variety of tasks. Image segmentation using multiple inputs, height estimation from the aerial photographs, or semantic image synthesis.

Organization

Similar to the original source of the data (https://www.opengeodata.nrw.de/produkte/geobasis/lbi/dop/dop_jp2_f10_paketiert/), we organize all samples by the city they were acquired over. Their filenames, e.g., 345_5668_rgb.jp2 consists of the UTM zone 32N coordinates and the datatype (RGB, DEM or seg for land cover).

File formats

All data is geocoded and can be opened using QGIS (https://www.qgis.org/). The aerial photographs are stored as JPEG2000 files, the land cover maps and digital elevation models both as GeoTIFFs. The accompanying scripts show how to read the data into Python.

Categories:
117 Views

The simulated InSAR building dataset contains 312 simulated SAR image pairs generated from 39 different building models. Each building model is simulated at 8 viewing-angles. The sample number is 216 of the train set and is 96 of the test set. Each simulated InSAR sample contains three channels: master SAR image, slave SAR image, and interferometric phase image. This dataset serves the CVCMFF Net for building semantic segmentation of InSAR images.

Categories:
81 Views

Pages