Segmentation of TC clouds in 2016. The segmentation task was accomplished by an algorithm which takes a time series of brightness temperature images of TCs and uses image processing techniques to acquire segmentation for each image in a semi-supervised manner.
2016 TC cloud segmentation animation
- Categories:

As part of the 2018 IEEE GRSS Data Fusion Contest, the Hyperspectral Image Analysis Laboratory and the National Center for Airborne Laser Mapping (NCALM) at the University of Houston are pleased to release a unique multi-sensor optical geospatial representing challenging urban land-cover land-use classification task. The data were acquired by NCALM over the University of Houston campus and its neighborhood on February 16, 2017 between 16:31 and 18:18 GMT.
Data files, as well as training and testing ground truth are provided in the enclosed zip file.
- Categories:

The dataset is a new high-quality dataset to advance sea-land segmentation with high-resolution remote sensing images. The dataset contains 1,726 hand-labeled and cropped Gaofen-1 images with an 8-meter spatial resolution and 4 bands, covering the various types of coastlines in Lianyungang, China.
The dataset is a new high-quality dataset to advance sea-land segmentation with high-resolution remote sensing images. The dataset contains 1,726 hand-labeled and cropped Gaofen-1 images with an 8-meter spatial resolution and 4 bands, covering the various types of coastlines in Lianyungang, China.
- Categories:
Wildfires are one of the deadliest and dangerous natural disasters in the world. Wildfires burn millions of forests and they put many lives of humans and animals in danger. Predicting fire behavior can help firefighters to have better fire management and scheduling for future incidents and also it reduces the life risks for the firefighters. Recent advance in aerial images shows that they can be beneficial in wildfire studies.
The aerial pile burn detection dataset consists of different repositories. The first one is a raw video recorded using the Zenmuse X4S camera. The format of this file is MP4. The duration of the video is 966 seconds with a Frame Per Second (FPS) of 29. The size of this repository is 1.2 GB. The first video was used for the "Fire-vs-NoFire" image classification problem (training/validation dataset). The second one is a raw video recorded using the Zenmuse X4S camera. The duration of the video is 966 seconds with a Frame Per Second (FPS) of 29. The size of this repository is 503 MB. This video shows the behavior of one pile from the start of burning. The resolution of these two videos is 1280x720.
The third video is 89 seconds of heatmap footage of WhiteHot from the thermal camera. The size of this repository is 45 MB. The fourth one is 305 seconds of GreentHot heatmap with a size of 153 MB. The fifth repository is 25 mins of fusion heatmap with a size of 2.83 GB. All these three thermal videos are recorded by the FLIR Vue Pro R thermal camera with an FPS of 30 and a resolution of 640x512. The format of all these videos is MOV.
The sixth video is 17 mins long from the DJI Phantom 3 camera. This footage is used for the purpose of the "Fire-vs-NoFire" image classification problem (test dataset). The FPS is 30, the size is 32 GB, the resolution is 3840x2160, and the format is MOV.
The seventh repository is 39,375 frames that resized to 254x254 for the "Fire-vs-NoFire" image classification problem (Training/Validation dataset). The size of this repository is 1.3 GB and the format is JPEG.
The eighth repository is 8,617 frames that resized to 254x254 for the "Fire-vs-NoFire" image classification problem (Test dataset). The size of this repository is 301 MB and the format is JPEG.
The ninth repository is 2,003 fire frames with a resolution of 3480x2160 for the fire segmentation problem (Train/Val/Test dataset). The size of this repository is 5.3 GB and the format is JPEG.
The last repository is 2,003 ground truth mask frames regarding the fire segmentation problem. The resolution of each mask is 3480x2160. The size of this repository is 23.4 MB.
The preprint article of this dataset is available here:
https://arxiv.org/pdf/2012.14036.pdf
For more information please find the Table at:
To find other projects and articles in our group:
- Categories:
Here we introduce so-far the largest subject-rated database of its kind, namely, "Effect of Paddy Rice vegetation on path-loss between CC2650 SoC 32-bit Arm Cortex-M3 based sensor nodes operating at 2.4 GHz Radio Frequency (RF)". This database contains received signal strength measurements collected through campaigns in the IEEE 802.15.4 standard precision agricultural monitoring infrastructure developed for Paddy rice crop monitoring from period 03/07/2019 to 18/11/2019.
- Categories:
Here we introduce so-far the largest subject-rated database of its kind, namely, "Effect of Paddy Rice vegetation on received signal strength between CC2538 SoC 32-bit Arm Cortex-M3 based sensor nodes operating at 2.4 GHz Radio Frequency (RF)". This database contains received signal strength measurements collected through campaigns in the IEEE 802.15.4 standard precision agricultural monitoring infrastructure developed for Paddy Rice crop monitoring from period 01/07/2020 to 03/11/2020.
- Categories: