The objective of this dataset is the fault diagnosis in diesel engines to assist the predictive maintenance, through the analysis of the variation of the pressure curves inside the cylinders and the torsional vibration response of the crankshaft. Hence a fault simulation model based on a zero-dimensional thermodynamic model was developed. The adopted feature vectors were chosen from the thermodynamic model and obtained from processing signals as pressure and temperature inside the cylinder, as well as, torsional vibration of the engine’s flywheel.


Cyber-physical systems (CPS) have been increasingly attacked by hackers. Recent studies have shown that CPS are especially vulnerable to insider attacks, in which case the attacker has full knowledge of the systems configuration. To better prevent such types of attacks, we need to understand how insider attacks are generated. Typically, there are three critical aspects for a successful insider attack: (i) Maximize damage, (ii) Avoid detection and (iii) Minimize the attack cost.


The Jackal UGV, from Clearpath Robotics, was used as the data collecting platform. This skid-steer four-wheel-drive vehicle comes with an onboard IMU, two DC motors with encoders that measure wheel angular speeds, and current sensors that measure motor current outputs. On each side of the robot, the front wheel and back wheel are jointed with a gearbox and so spin together at the same rate and direction. The IMU provided vehicle attitude measurements in terms of Euler angles, as well as linear acceleration and angular rate of the vehicle body in three Euclidean axes.


Each HDF5 file contains four types of data entries: timestamps, signals, images, and labels. A .ipynb code example is included to demonstrate how to retrieve and format data appropriately. 

The .ipynb script requires h5py, numpy, and matplotlib libraries.

** If you plan to load the entire dataset into your memory, make sure your PC has >16 Gb RAM


 The data set contains 152 measurements of room impulse responses for direction of arrival estimation, using a compact three-channel microphone array. Sources are placed at 10-degree intervals from -90 to 90 degrees in the azimuth plane at range 150 cm. There are also 5 off-grid measurement positions and 6 off-range positions - at ranges 1 m, 2 m, 2.5 m and 3 m. The measurements are performed in a furnished classroom, which is approximately rectangular and of dimensions 9 x 6 x 3 m. The reverberation time is 0.4 s.


The data set contains: ·     Data: Room impulse responses are included in the file “RIRs_DTU.mat”·     Images: Pictures of the room and setup, included as *.jpg files.·     Documentation: A pdf file that contains the relevant info regarding the dataset.


The dermoscopic images considered in the paper "Dermoscopic Image Classification with Neural Style Transfer" are available for public download through the ISIC database (!/topWithHeader/wideContentTop/main). These are 24-bit JPEG images with a typical resolution of 768 × 512 pixels. However, not all the images in the database are in satisfactory condition.


Human activity recognition (HAR) has been one of the most prevailing and persuasive research topics in different fields for the past few decades. The main idea is to comprehend individuals’ regular activities by looking at bits of knowledge accumulated from people and their encompassing living environments based on sensor observations. HAR has a great impact on human-robot collaborative work, especially in industrial works. In compliance with this idea, we have organized this year’s Bento Packaging Activity Recognition Challenge.

Last Updated On: 
Sat, 07/31/2021 - 02:40
Citation Author(s): 
Sayeda Shamma Alia, Kohei Adachi, Paula Lago, Nazmun Nahid, Haru Kaneko, Sozo Inoue

The dataset contains 4600 samples of 12 different hand-movement gestures. Data were collected from four different people using the FMCW AWR1642 radar. Each sample is saved as a CSV file associated with its gesture type.


Dataset is divided into 12 separate folders associated to different gesture types. Each folder contains gesture samples saved as a CSV file. First line of the CSV file is a headline describing the columns of data: FrameNumber, ObjectNumber, Range, Velocity, PeakValue, x coordinate, y coordinate. In order to read the gestures into matrix representation copy all 12 folders into single folder called “data”. Copy the “” script to the same folder as “data” and run it. Script will convert CSV files of given gesture type into the numpy matrix.


This dataset consists of EEG data of 40 epileptic seizure patients (both male and female) of age from 4 to 80 years. The raw data was collected from Allengers VIRGO EEG machine at Medisys Hospitals, Hyderabad, India. The EEG electrodes were placed according to 10 – 20 International standard. The EEG data was recorded from 16 channels (FP2-F4, F4-C4, C4-P4, P4-O2, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F8, F8-T4, T4-T6, T6-O2, FP1-F7, F7-T3, T3-T5, and T5-O1) at 256 samples per second.


Reverse transcription-polymerase chain reaction (RT-PCR) is currently the gold standard in COVID-19 diagnosis. It can, however, take days to provide the diagnosis, and false negative rate is relatively high. Imaging, in particular chest computed tomography (CT), can assist with diagnosis and assessment of this disease. Nevertheless, it is shown that standard dose CT scan gives significant radiation burden to patients, especially those in need of multiple scans.



“Dataset-S1” contains two folders for COVID-19 and Normal DICOM images, named as “COVID-S1” and “Normal-S1”, respectively. Within the same folder, three CSV files are available. The first one, named as “Radiologist-S1.csv”, contains labels assigned to the corresponding cases by three experienced radiologists. The second CSV file, “Clinical-S1.csv”, includes the clinical information as well as the result of the RT-PCR test, if available. The third file is named “LDCT-SL-Labels-S1.csv” and contains the slice-level labels related to COVID-19 cases. In other words, slices demonstrating infection are specified in this file.

Each row in this CSV file corresponds to a specific case, and each column represents the slice number in the volumetric CT scan. Label 1 indicates a slice with the evidence of infection, while 0 is assigned to slices with no evidence of infection.

Note that slices in each case should be sorted based on the “Slice-Location” value to match with the provided labels in the CSV file. The Slice Location values are stored in DICOM files and accessible from the following DICOM tag: (0020,1041) – DS – Slice Location

 “Dataset-S2” contains 100 COVID-19 positive cases, confirmed with RT-PCR test. 68 cases have related imaging findings, whereas 32 do not reveal signs of infection. These two groups are placed in two folders of “PCP-Lung-Positive “and “PCP-Lung-Negative”. “Dataset-S2” also includes a CSV file, namely “Clinical-S2.csv” presenting the clinical information.



This dataset is taken from 20 subjects over a duration of 1 hour where experiments were done on the upper body bio-impedance with the following objectives:

a)     Evaluate the effect of externally induced perturbance at the SE interface caused by motion, applied pressure, temperature variation and posture change on bio-impedance measurements.

b)     Evaluate the degree of distortion due to artefact at multiple frequencies (10kHz-100kHz) in the bio-impedance measurements.