Geo-Sensing
This dataset contains the vehicular traces from a location in Jeju-si, South Korea. The dataset contains 8,495,739 traces of vehicles. It comprises of major areas/junctions of which one is the intersection from where the Jeju International Airport and Jeju Seaport traffic passes on daily. Jeju International Airport is one of the busiest airpots in the world. Four types of vehicles were considered in the simulation of dataset, i.e., buses, trucks, passenger-cars, taxies. Each trace contains:
-
time (timestep in seconds)
- Categories:
This study presents a dataset that comprises the magnetic field, Wi-Fi, and the data from the inertial measurement unit (IMU) sensors of the smartphone including accelerometer, gyroscope, and barometer. First, the important
characteristics of both the Wi-Fi and the magnetic field that require further investigation are highlighted, and later the data are collected. The data are collected over a longer period spanning approximately five years involving five
- Categories:
WITH the advancement in sensor technology, huge amounts of data are being collected from various satellites. Hence, the task of target-based data retrieval and acquisition has become exceedingly challenging. Existing satellites essentially scan a vast overlapping region of the Earth using various sensing techniques, like multi-spectral, hyperspectral, Synthetic Aperture Radar (SAR), video, and compressed sensing, to name a few.
- Categories:
WITH the advancement in sensor technology, huge amounts of data are being collected from various satellites. Hence, the task of target-based data retrieval and acquisition has become exceedingly challenging. Existing satellites essentially scan a vast overlapping region of the Earth using various sensing techniques, like multi-spectral, hyperspectral, Synthetic Aperture Radar (SAR), video, and compressed sensing, to name a few.
- Categories:
WITH the advancement in sensor technology, huge amounts of data are being collected from various satellites. Hence, the task of target-based data retrieval and acquisition has become exceedingly challenging. Existing satellites essentially scan a vast overlapping region of the Earth using various sensing techniques, like multi-spectral, hyperspectral, Synthetic Aperture Radar (SAR), video, and compressed sensing, to name a few.
- Categories:
WITH the advancement in sensor technology, huge amounts of data are being collected from various satellites. Hence, the task of target-based data retrieval and acquisition has become exceedingly challenging. Existing satellites essentially scan a vast overlapping region of the Earth using various sensing techniques, like multi-spectral, hyperspectral, Synthetic Aperture Radar (SAR), video, and compressed sensing, to name a few.
- Categories:
With the advancement in sensor technology, huge amounts of data are being collected from various satellites. Hence, the task of target-based data retrieval and acquisition has become exceedingly challenging. Existing satellites essentially scan a vast overlapping region of the Earth using various sensing techniques, like multi-spectral, hyperspectral, Synthetic Aperture Radar (SAR), video, and compressed sensing, to name a few.
- Categories:
With the advancement in sensor technology, huge amounts of data are being collected from various satellites. Hence, the task of target-based data retrieval and acquisition has become exceedingly challenging. Existing satellites essentially scan a vast overlapping region of the Earth using various sensing techniques, like multi-spectral, hyperspectral, Synthetic Aperture Radar (SAR), video, and compressed sensing, to name a few.
- Categories:
Here we introduce so-far the largest subject-rated database of its kind, namely, "Effect of Millet vegetation on path-loss between CC2538 SoC 32-bit Arm Cortex-M3 based sensor nodes operating at 2.4 GHz Radio Frequency (RF)". This database contains received signal strength measurements collected through campaigns in the IEEE 802.15.4 standard precision agricultural monitoring infrastructure developed for millet crop monitoring from period 03/06/2020 to 04/10/2020.
- Categories: