Geo-Sensing

Empirical line methods (ELM) are frequently used to correct images from aerial remote sensing. Remote sensing of aquatic environments captures only a small amount of energy because the water absorbs much of it. The small signal response of the water is proportionally smaller when compared to the other land surface targets.

 

This dataset presents some resources and results of a new approach to calibrate empirical lines combining reference calibration panels with water samples. We optimize the method using python algorithms until reaches the best result.

 

Categories:
1268 Views

Emergency  managers  of  today  grapple  with  post-hurricane damage assessment that is often labor-intensive, slow,costly,   and   error-prone.   As   an   important   first   step   towards addressing  the   challenge,   this   paper   presents   the   development of  benchmark  datasets  to  enable  the  automatic  detection  ofdamaged buildings from post-hurricane remote sensing imagerytaken  from  both  airborne  and  satellite  sensors.  Our  work  has two  major  contributions:  (1)  we  propose  a  scalable  framework to  create  benchmark  datasets  of  hurricane-damaged  buildings

Categories:
4651 Views

This is the data competion hosted by the IEEE Machine Learning for Signal Processing (MLSP) Technical Committee as part of the 27th IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2017), Tokyo, Japan. This year the competion is based on a dataset kindly provided Petroleum Geo-Systems (PGS), on source separation for seismic data acquistion. 

Last Updated On: 
Tue, 05/01/2018 - 15:07
Citation Author(s): 
IEEE MLSP Technical Committee

Pages