Geo-Sensing
Empirical line methods (ELM) are frequently used to correct images from aerial remote sensing. Remote sensing of aquatic environments captures only a small amount of energy because the water absorbs much of it. The small signal response of the water is proportionally smaller when compared to the other land surface targets.
This dataset presents some resources and results of a new approach to calibrate empirical lines combining reference calibration panels with water samples. We optimize the method using python algorithms until reaches the best result.
- Categories:

Emergency managers of today grapple with post-hurricane damage assessment that is often labor-intensive, slow,costly, and error-prone. As an important first step towards addressing the challenge, this paper presents the development of benchmark datasets to enable the automatic detection ofdamaged buildings from post-hurricane remote sensing imagerytaken from both airborne and satellite sensors. Our work has two major contributions: (1) we propose a scalable framework to create benchmark datasets of hurricane-damaged buildings
- Categories: