Deep Learning

The PRIME-FP20 dataset is established for development and evaluation of retinal vessel segmentation algorithms in ultra-widefield (UWF) fundus photography (FP). PRIME-FP20 provides 15 high-resolution UWF FP images acquired using the Optos 200Tx camera (Optos plc, Dunfermline, United Kingdom), the corresponding labeled binary vessel maps, and the corresponding binary masks for the valid data region for the images. For each UWF FP image, a concurrently captured UWF fluorescein angiography (FA) is also included. 

Categories:
3623 Views

Several pathological phenomena are closely associated with mechanical properties of vessel and interactions of blood flow–wall dynamics. However, conventional techniques cannot easily measure these features. In this study, new deep learning-based simultaneous measurement of flow–wall dynamics (DL-SFW) is proposed by devising integrated neural network for super-resolved localization and vessel wall segmentation and combining with tissue motion measurement technique and flow velocimetry.

Categories:
433 Views

This paper applies AI (artificial intelligence) technology to analyze low-dose HRCT (High-resolution chest radiography) data in an attempt to detect COVID-19 pneumonia symptoms. A new model structure is proposed with segmentation of anatomical structures on DNNs-based (deep learning neural network) methods, relying on an abundance of labeled data for proper training.

Categories:
3798 Views

This dataset has been collected in the Patient Recovery Center (a  24-hour,  7-day  nurse  staffed  facility)  with  medical  consultant   from  the  Mobile  Healthcare  Service of Hamad Medical Corporation.

Categories:
1692 Views

Extracting the boundaries of Photovoltaic (PV) plants is essential in the process of aerial inspection and autonomous monitoring by aerial robots. This method provides a clear delineation of the utility-scale PV plants’ boundaries for PV developers, Operation and Maintenance (O&M) service providers for use in aerial photogrammetry, flight mapping, and path planning during the autonomous monitoring of PV plants. 

Categories:
1439 Views

This work develops a novel power control framework for energy-efficient powercontrol in wireless networks. The proposed method is a new branch-and-boundprocedure based on problem-specific bounds for energy-efficiency maximizationthat allow for faster convergence. This enables to find the global solution forall of the most common energy-efficient power control problems with acomplexity that, although still exponential in the number of variables, is muchlower than other available global optimization frameworks.

Categories:
476 Views

The zizania image dataset consists of a total of 4900 zizanias. The quantity of high quality samples is 2648 and defective quality samples is 2252.

There are four classes in the apple image dataset, which are apples with a diameter greater than 90 mm, between 80 mm and 90 mm, less than 80 mm, and diseases and insect pests. The quantity distributionin above categories are 3647 (51.19%), 2464 (34.59%), 558 (7.83%), 455 (6.39%).

Categories:
1342 Views

Egocentric vision is important for environment-adaptive control and navigation of humans and robots. Here we developed ExoNet, the largest open-source dataset of wearable camera images of real-world walking environments. The dataset contains over 5.6 million RGB images of indoor and outdoor environments, which were collected during summer, fall, and winter. 923,000 of the images were human-annotated using a 12-class hierarchical labelling architecture.

Categories:
6023 Views

Research on damage detection of road surfaces has been an active area of research, but most studies have focused so far on the detection of the presence of damages. However, in real-world scenarios, road managers need to clearly understand the type of damage and its extent in order to take effective action in advance or to allocate the necessary resources. Moreover, currently there are few uniform and openly available road damage datasets, leading to a lack of a common benchmark for road damage detection.

Categories:
4234 Views

The 2020 Data Fusion Contest, organized by the Image Analysis and Data Fusion Technical Committee (IADF TC) of the IEEE Geoscience and Remote Sensing Society (GRSS) and the Technical University of Munich, aims to promote research in large-scale land cover mapping based on weakly supervised learning from globally available multimodal satellite data. The task is to train a machine learning model for global land cover mapping based on weakly annotated samples.

Last Updated On: 
Mon, 01/25/2021 - 09:03

Pages