Deep Learning

This paper applies AI (artificial intelligence) technology to analyze low-dose HRCT (High-resolution chest radiography) data in an attempt to detect COVID-19 pneumonia symptoms. A new model structure is proposed with segmentation of anatomical structures on DNNs-based (deep learning neural network) methods, relying on an abundance of labeled data for proper training.


This dataset has been collected in the Patient Recovery Center (a  24-hour,  7-day  nurse  staffed  facility)  with  medical  consultant   from  the  Mobile  Healthcare  Service of Hamad Medical Corporation.


Extracting the boundaries of Photovoltaic (PV) plants is essential in the process of aerial inspection and autonomous monitoring by aerial robots. This method provides a clear delineation of the utility-scale PV plants’ boundaries for PV developers, Operation and Maintenance (O&M) service providers for use in aerial photogrammetry, flight mapping, and path planning during the autonomous monitoring of PV plants. 


This work develops a novel power control framework for energy-efficient powercontrol in wireless networks. The proposed method is a new branch-and-boundprocedure based on problem-specific bounds for energy-efficiency maximizationthat allow for faster convergence. This enables to find the global solution forall of the most common energy-efficient power control problems with acomplexity that, although still exponential in the number of variables, is muchlower than other available global optimization frameworks.


The zizania image dataset consists of a total of 4900 zizanias. The quantity of high quality samples is 2648 and defective quality samples is 2252.

There are four classes in the apple image dataset, which are apples with a diameter greater than 90 mm, between 80 mm and 90 mm, less than 80 mm, and diseases and insect pests. The quantity distributionin above categories are 3647 (51.19%), 2464 (34.59%), 558 (7.83%), 455 (6.39%).


Abstract: Recent advances in computer vision and deep learning are allowing researchers to develop automated environment recognition systems for robotic leg prostheses and exoskeletons. However, small-scale and private training datasets have impeded the widespread development and dissemination of image classification algorithms (e.g., convolutional neural networks) for recognizing the human walking environment.


Research on damage detection of road surfaces has been an active area of research, but most studies have focused so far on the detection of the presence of damages. However, in real-world scenarios, road managers need to clearly understand the type of damage and its extent in order to take effective action in advance or to allocate the necessary resources. Moreover, currently there are few uniform and openly available road damage datasets, leading to a lack of a common benchmark for road damage detection.


The 2020 Data Fusion Contest, organized by the Image Analysis and Data Fusion Technical Committee (IADF TC) of the IEEE Geoscience and Remote Sensing Society (GRSS) and the Technical University of Munich, aims to promote research in large-scale land cover mapping based on weakly supervised learning from globally available multimodal satellite data. The task is to train a machine learning model for global land cover mapping based on weakly annotated samples.

Last Updated On: 
Mon, 01/25/2021 - 09:03

This dataset comes up as a benchmark dataset for machines to automatically recognizing the handwritten assamese digists (numerals) by extracting useful features by analyzing the structure. The Assamese language comprises of a total of 10 digits from 0 to 9. We have collected a total of 516 handwritten digits from 52 native assamese people irrespective of their age (12-86 years), gender, educational background etc. The digits are captured in .jpeg format using a paint mobile application developed by us which automatically saves the images in the internal storage of the mobile.