classification

Remote sensing of environment research has explored the benefits of using synthetic aperture radar imagery systems for a wide range of land and marine applications since these systems are not affected by weather conditions and therefore are operable both daytime and nighttime. The design of image processing techniques for  synthetic aperture radar applications requires tests and validation on real and synthetic images. The GRSS benchmark database supports the desing and analysis of algorithms to deal with SAR and PolSAR data.

Last Updated On: 
Tue, 02/08/2022 - 17:46
Citation Author(s): 
Nobre, R. H.; Rodrigues, F. A. A.; Rosa, R.; Medeiros, F.N.; Feitosa, R., Estevão, A.A., Barros, A.S.

As various modalities of genomic data are accumulating, methods to integrate across multi-omics datasets are becoming important. Error-correcting output codes (ECOC) is an ensemble learning strategy for solving a multiclass problem thru a decoding process that aggregates the predictions of multiple classifiers. Thus, it lends itself naturally to aggregating predictions across multiple views as well. We applied the ECOC to multi-view learning to see if this strategy can enhance classifier performance as compared to traditional techniques.

Categories:
44 Views

This dataset consists of high-dimensional data streams collected from a cyber-physical 118-bus power system, offering a valuable resource for fault diagnosis and classification in large-scale smart grids.

Categories:
447 Views

This paper presents an innovative Internet of Things (IoT) system that integrates gas sensors and a custom Convolutional Neural Network (CNN) to classify the freshness and species of beef and mutton in real time. The CNN, trained on 9,928 images, achieved 99% accuracy, outperforming models like ResNet-50, SVM, and KNN. The system uses three gas sensors (MQ135, MQ4, MQ136) to detect gases such as ammonia, methane, and hydrogen sulfide, which indicate meat spoilage.

Categories:
300 Views

Recently, combinatorial interaction strategies have a large spectrum as black box strategies for testing software and hardware. This paper discusses a novel adoption of a combinatorial interaction strategy to generate a sparse combinatorial data table (SCDT) for machine learning. Unlike test data generation strategies, in which the t-way tuples synthesize into a test case, the proposed SCDT requires analyzing instances against their corresponding tuples to generate a systematic learning dataset.

Categories:
122 Views

According to US NOAA, unexploded ordnances (UXO) are ”explosive weapons such as bombs, bullets, shells, grenades, mines, etc. that did not explode when they were employed and still pose a risk of detonation”. UXOs are among the most dangerous, threats to human life, environment and wildlife protection as well as economic development. The risks associated with UXOs do not discriminate based on age, gender, or occupation, posing a danger to anyone unfortunate enough to encounter them.

Categories:
1225 Views

This paper presents a dataset of brain Electroencephalogram (EEG) signals created when Malayalam vowels and consonants are spoken. The dataset was created by capturing EEG signals utilizing the OpenBCI Cyton device while a volunteer spoke Malayalam vowels and consonants. It includes recordings obtained from both sub-vocal and vocal. The creation of this dataset aims to support individuals who speak Malayalam and suffer from neurodegenerative diseases.

Categories:
2556 Views

Nasal Cytology, or Rhinology, is the subfield of otolaryngology, focused on the microscope observation of samples of the nasal mucosa, aimed to recognize cells of different types, to spot and diagnose ongoing pathologies. Such methodology can claim good accuracy in diagnosing rhinitis and infections, being very cheap and accessible without any instrument more complex than a microscope, even optical ones.

Categories:
634 Views

Pages