The development of electronic nose (e-nose) for a rapid, simple, and low-cost meat assessment system becomes the concern of researchers in recent years. Hence, we provide time-series datasets that were recorded from e-nose for beef quality monitoring experiment. This dataset is originated from 12 type of beef cuts including round (shank), top sirloin, tenderloin, flap meat (flank), striploin (shortloin), brisket, clod/chuck, skirt meat (plate), inside/outside, rib eye, shin, and fat.

Categories:
543 Views

This dataset comes up as a benchmark dataset for machines to automatically recognizing the handwritten assamese digists (numerals) by extracting useful features by analyzing the structure. The Assamese language comprises of a total of 10 digits from 0 to 9. We have collected a total of 516 handwritten digits from 52 native assamese people irrespective of their age (12-86 years), gender, educational background etc. The digits are captured in .jpeg format using a paint mobile application developed by us which automatically saves the images in the internal storage of the mobile.

Categories:
649 Views

The recent interest in using deep learning for seismic interpretation tasks, such as facies classification, has been facing a significant obstacle, namely the absence of large publicly available annotated datasets for training and testing models. As a result, researchers have often resorted to annotating their own training and testing data. However, different researchers may annotate different classes, or use different train and test splits.

Instructions: 

#Basic Intructions for usage

Make sure you have the following folder structure in the data directory after you unzip the file:

data

├── splits

├── test_once

│   ├── test1_labels.npy

│   ├── test1_seismic.npy

│   ├── test2_labels.npy

│   └── test2_seismic.npy

└── train

    ├── train_labels.npy

    └── train_seismic.npy

The train and test data are in NumPy .npy format ideally suited for Python. You can open these file in Python as such: 

import numpy as np

train_seismic = np.load('data/train/train_seismic.npy')

Make sure the testing data is only used once after all models are trained. Using the test set multiple times makes it a validation set.

We also provide fault planes, and the raw horizons that were used to generate the data volumes in addition to the processed data volumes before splitting to training and testing.

# References:

1- Netherlands Offshore F3 block. [Online]. Available: https://opendtect.org/osr/pmwiki.php/Main/Netherlands OffshoreF3BlockComplete4GB

2- Alaudah, Yazeed, et al. "A machine learning benchmark for facies classification." Interpretation 7.3 (2019): 1-51.

 

Categories:
1014 Views

Network traffic analysis, i.e. the umbrella of procedures for distilling information from network traffic, represents the enabler for highly-valuable profiling information, other than being the workhorse for several key network management tasks. While it is currently being revolutionized in its nature by the rising share of traffic generated by mobile and hand-held devices, existing design solutions are mainly evaluated on private traffic traces, and only a few public datasets are available, thus clearly limiting repeatability and further advances on the topic.

Instructions: 

MIRAGE-2019 is a human-generated dataset for mobile traffic analysis with associated ground-truth, having the goal of advancing the state-of-the-art in mobile app traffic analysis.

MIRAGE-2019 takes into consideration the traffic generated by more than 280 experimenters using 40 mobile apps via 3 devices.

APP LIST reports the details on the apps contained in the two versions of the dataset.

If you are using MIRAGE-2019 human-generated dataset for scientific papers, academic lectures, project reports, or technical documents, please help us increasing its impact by citing the following reference:

Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, Valerio Persico and Antonio Pescapè,"MIRAGE: Mobile-app Traffic Capture and Ground-truth Creation",4th IEEE International Conference on Computing, Communications and Security (ICCCS 2019), October 2019, Rome (Italy).

[ARTICLE] [BIBTEX]

Categories:
693 Views

We present two synthetic datasets on classification of Morse code symbols for supervised machine learning problems, in particular, neural networks. The linked Github page has algorithms for generating a family of such datasets of varying difficulty. The datasets are spatially one-dimensional and have a small number of input features, leading to high density of input information content. This makes them particularly challenging when implementing network complexity reduction methods.

Instructions: 

First unzip the given file 'morse_datasets.zip' to get two datasets - 'baseline.npz' and 'difficult.npz'. These are 2 out of a family of synthetic datasets that can be generated using the given script 'generate_morse_dataset.py'. For instructions on using the script, see the docstring and/or the linked Github page.

To load data from a dataset, first download 'load_data.txt' and change its extension to '.py'

Then run the method 'load_data' and set the argument 'filename' to the path of the given dataset, for example './baseline.npz'

This will output 6 variables - xtr, ytr, xva, yva, xte, yte. These are the data (x) and labels (y) for the training (tr), validation (va) and test (te) splits. The y data is in one-hot format.

Then you can run your favorite machine learning / classification algorithm on the data.

Categories:
299 Views

These .s2p files contain the S-parameters measured between two on-neck antennas for multiple test subjects acting out four activites. Each files is one trial of measurement, containing 20 seconds of data sampled at 200 Hz.

Categories:
209 Views

Pages