A Indústria enfrenta desafios graves e fracassa sem competitividade. Atacando esta problemática, conferiu-se o oferecimento de maior eficiência a processos industriais para promover a produtividade, elevar a qualidade e impulsionar mudanças. A solução desenvolvida incluiu dispositivos com sensores não invasivos, simples de instalar, que contabilizam os itens sendo transportados em linhas de produção.
Os dados foram coletados utilizando o dispositivo IoT da EnergyNow Tecnologias denominado Prodbox™, o qual opera como um equipamento empregado para intensificar a produtividade e apontar maneiras estratégicas de modificar variáveis que interferem na visão de gestão sobre a produção.
O dispositivo utiliza sensores não obstrutivos para contabilizar o número de itens que atravessam a linha de detecção gerada entre o transmissor e o receptor instalados.
Notadamente, os dados coletados são enviados para a nuvem, onde podem, quando integrados a uma plataforma de análise, ser processados para apresentar indicadores de acompanhamento de produtividade. Um sistema inteligente pode processar os dados coletados e apresentar métricas que permitem ao gestor identificar formas de aumentar a produção, bem como etapas que estão prejudicando a produtividade. Além disso, alertas customizados podem ser configurados para prover informação sobre a parada ou inatividade detectada pelo dispositivo.
Os dados gerados através do dispositivo podem ser utilizados para entender melhor variáveis sobre o ritmo de produção e, a partir delas, fomentar projeções de produção, calculando-se a relação entre itens produzidos e período de tempo necessário (segundos, minutos, horas, dias, semanas, etc).
Algumas sugestões sobre abordagens a serem consideradas:
-
Verifique se políticas de aumento de produtividade estão sendo efetivas.
-
Distribuia melhor os funcionários em etapas diferentes de uma linha de produção.
-
Correlacione etapas de produção com variáveis que estejam interferindo na produtividade para resolver problemáticas internas.
- Categories:
This repository introduces a novel dataset for the classification of Chronic Obstructive Pulmonary Disease (COPD) patients and Healthy Controls. The Exasens dataset includes demographic information on 4 groups of saliva samples (COPD-HC-Asthma-Infected) collected in the frame of a joint research project, Exasens (https://www.leibniz-healthtech.de/en/research/projects/bmbf-project-exasens/), at the Research Center Borstel, BioMaterialBank Nord (Borstel, Germany).
Definition of 4 sample groups included within the Exasens dataset:
(I) Outpatients and hospitalized patients with COPD without acute respiratory infection (COPD).
(II) Outpatients and hospitalized patients with asthma without acute respiratory infections (Asthma).
(III) Patients with respiratory infections, but without COPD or asthma (Infected).
(IV) Healthy controls without COPD, asthma, or any respiratory infection (HC).
Attribute Information:
1- Diagnosis (COPD-HC-Asthma-Infected)
2- ID
3- Age
4- Gender (1=male, 0=female)
5- Smoking Status (1=Non-smoker, 2=Ex-smoker, 3=Active-smoker)
6- Saliva Permittivity:
a) Imaginary part (Min(Δ)=Absolute minimum value, Avg.(Δ)=Average)
b) Real part (Min(Δ)=Absolute minimum value, Avg.(Δ)=Average)
In case of using the introduced Exasens dataset or the proposed classification methods, please cite either of following references:
-
P. S. Zarrin, N. Roeckendorf and C. Wenger., "In-vitro Classification of Saliva Samples of COPD Patients and Healthy Controls Using Machine Learning Tools," in IEEE Access, doi: 10.1109/ACCESS.2020.3023971.
-
P.S. Zarrin, Zahari, F., Mahadevaiah, M.K. et al. Neuromorphic on-chip recognition of saliva samples of COPD and healthy controls using memristive devices. Sci Rep 10, 19742 (2020). https://doi.org/10.1038/s41598-020-76823-7
-
Soltani Zarrin, P.; Ibne Jamal, F.; Roeckendorf, N.; Wenger, C. Development of a Portable Dielectric Biosensor for Rapid Detection of Viscosity Variations and Its In Vitro Evaluations Using Saliva Samples of COPD Patients and Healthy Control. Healthcare 2019, 7, 11.
-
Soltani Zarrin, P.; Jamal, F.I.; Guha, S.; Wessel, J.; Kissinger, D.; Wenger, C. Design and Fabrication of a BiCMOS Dielectric Sensor for Viscosity Measurements: A Possible Solution for Early Detection of COPD. Biosensors 2018, 8, 78.
-
P.S. Zarrin and C. Wenger. Pattern Recognition for COPD Diagnostics Using an Artificial Neural Network and Its Potential Integration on Hardware-based Neuromorphic Platforms. Springer Lecture Notes in Computer Science (LNCS), Vol. 11731, pp. 284-288, 2019.
- Categories:
The database contains the raw range-azimuth measurements obtained from mmWave MIMO radars (IWR1843BOOST http://www.ti.com/tool/IWR1843BOOST) deployed in different positions around a robotic manipulator.
The database that contains the raw range-azimuth measurements obtained from mmWave MIMO radars inside a Human-Robot (HR) workspace environment.
The database contains 5 data structures:
i) mmwave_data_test has dimension 900 x 256 x 63. Contains 900 FFT range-azimuth measurements of size 256 x 63: 256-point range samples corresponding to a max range of 11m (min range of 0.5m) and 63 angle bins, corresponding to DOA ranging from -75 to +75 degree. These data are used for testing (validation database). The corresponding labels are in label_test. Each label (from 0 to 5) corresponds to one of the 6 positions (from 1 to 6) of the operator as detailed in the image attached.
ii) mmwave_data_train has dimension 900 x 256 x 63. Contains 900 FFT range-azimuth measurements used for training. The corresponding labels are in label_train.
iii) label_test with dimension 900 x 1, contains the true labels for test data (mmwave_data_test), namely classes (true labels) correspond to integers from 0 to 5.
iv) label_train with dimension 900 x 1, contains the true labels for train data (mmwave_data_train), namely classes (true labels) correspond to integers from 0 to 5.
v) p (1 x 900) contains the chosen random permutation for data partition among nodes/device and federated learnig simulation (see python code).
- Categories:
This dataset consists of RSS data measured from smartphones carried by two human beings.
Two users were standing at a certain distance (d = {0.2:0.2:2, 3:5}) from each other. For each distance, the App was made to scan for incoming BLE signals for about 1min. The following information is logged: the truth distance, name of smartphone, MAC address of BLE chipset, the packet payload, RSS values, time elapsed, and timestamp. Two phones were used: 1) gryphonelab, and 2) HTC One M9.
We consolidated the data and reorganized them while applying moving average to the raw RSS value. The reorganized data has the following format:
- · device name,
- · time elapsed,
- · rss (raw RSS value),
- · mRSS10 (filtered RSS value with window size = 10),
- · mRSS100 (filtered RSS value with window size = 100),
- · distance, and
- · label
- Categories:

This paper presents a novel implementation scheme
of the essential circuit blocks for high performance, full-precision
Booth multipliers leveraging a hybrid logic style. By exploiting
the behavior of parasitic capacitance of MOSFETs, a carefully
engineered design style is employed to reduce dynamic power dissipation
while improving the glitch immunity of the circuit blocks.
The circuit-level techniques along with the proposed signal-flow
optimization scheme prevent the generation and propagation
- Categories:
This dataset provides the magneto-inertial signals from six MIMU (2 Xsens, 2 APDM, 2 Shimmer) and orientation from 8 reflective markers (VICON) at 3 different speeds (slow, medium, fast). Proprietary orientations from MIMU vendors are also included. All data are synchronized at 100 Hz.
- Categories:
Including the symbol under demodulation in data-aided reference/pilot recovery process, dominates the contribution of all the received sybmols. Therefore, excluding the contribution of the symbol under detection allows other symbols to equally contributeto the reference estimation.
Each folder is named by its corresponding figure.
- Categories: