Computer Vision
A dataset of videos, recorded by an in-car camera, of drivers in an actual car with various facial characteristics (male and female, with and without glasses/sunglasses, different ethnicities) talking, singing, being silent, and yawning. It can be used primarily to develop and test algorithms and models for yawning detection, but also recognition and tracking of face and mouth. The videos are taken in natural and varying illumination conditions. The videos come in two sets, as described next:
- Categories:
The first bit of light is the gesture of being, on a massive screen of the black panorama. A small point of existence, a gesture of being. The universal appeal of gesture is far beyond the barriers of languages and planets. These are the microtransactions of symbols and patterns which have traces of the common ancestors of many civilizations.
- Categories:
This is an eye tracking dataset of 84 computer game players who played the side-scrolling cloud game Somi. The game was streamed in the form of video from the cloud to the player. The dataset consists of 135 raw videos (YUV) at 720p and 30 fps with eye tracking data for both eyes (left and right). Male and female players were asked to play the game in front of a remote eye-tracking device. For each player, we recorded gaze points, video frames of the gameplay, and mouse and keyboard commands.
- Categories:
Deep facial features with identity generated from CelebA dataset using facenet network (128 real-valued features). Dataset contains:
- full dataset
- training dataset
- validation dataset
Link to CelebA dataset: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
- Categories:
The dataset contains medical signs of the sign language including different modalities of color frames, depth frames, infrared frames, body index frames, mapped color body on depth scale, and 2D/3D skeleton information in color and depth scales and camera space. The language level of the signs is mostly Word and 55 signs are performed by 16 persons two times (55x16x2=1760 performance in total).
- Categories:
We build an original dataset of thermal videos and images that simulate illegal movements around the border and in protected areas and are designed for training machines and deep learning models. The videos are recorded in areas around the forest, at night, in different weather conditions – in the clear weather, in the rain, and in the fog, and with people in different body positions (upright, hunched) and movement speeds (regu- lar walking, running) at different ranges from the camera.
- Categories:
Mosquito bites result in the deaths of more than 1 million people every year. Certain species of mosquitos like Aedes are the main vector of arboviruses that cause Dengue, Malaria and Yellow fever. Image based mosquito species classification can be helpful to implement strategies to prevent the spread of mosquito borne disease. Automated mosquito species classification can aid in laborious and time consuming task of entomologists besides enhancing accuracy.
- Categories:
Recognition and classification of currency is one of the important task. It is a very crucial task for visually impaired people. It helps them while doing day to day financial transactions with shopkeepers while traveling, exchanging money at banks, hospitals, etc. The main objectives to create this dataset were:
1) Create a dataset of old and new Indian currency.
2) Create a dataset of Thai Currency.
3) Dataset consists of high-quality images.
- Categories:
INDIA is the second-largest fruit and vegetable exporter in the world after China. It ranked first in the production of Bananas, Papayas, and Mangoes. Public datasets of fruits are available but they are limited to general fruit classes and failed to classify the fruits according to the fruit quality. To overcome this problem, we have created a dataset named FruitsGB (Fruits Good/Bad) dataset.
- Categories: