Deep Learning

The zizania image dataset consists of a total of 4900 zizanias. The quantity of high quality samples is 2648 and defective quality samples is 2252.

There are four classes in the apple image dataset, which are apples with a diameter greater than 90 mm, between 80 mm and 90 mm, less than 80 mm, and diseases and insect pests. The quantity distributionin above categories are 3647 (51.19%), 2464 (34.59%), 558 (7.83%), 455 (6.39%).


Abstract: Recent advances in computer vision and deep learning are allowing researchers to develop automated environment recognition systems for robotic leg prostheses and exoskeletons. However, small-scale and private training datasets have impeded the widespread development and dissemination of image classification algorithms (e.g., convolutional neural networks) for recognizing the human walking environment.


Research on damage detection of road surfaces has been an active area of research, but most studies have focused so far on the detection of the presence of damages. However, in real-world scenarios, road managers need to clearly understand the type of damage and its extent in order to take effective action in advance or to allocate the necessary resources. Moreover, currently there are few uniform and openly available road damage datasets, leading to a lack of a common benchmark for road damage detection.


The 2020 Data Fusion Contest, organized by the Image Analysis and Data Fusion Technical Committee (IADF TC) of the IEEE Geoscience and Remote Sensing Society (GRSS) and the Technical University of Munich, aims to promote research in large-scale land cover mapping based on weakly supervised learning from globally available multimodal satellite data. The task is to train a machine learning model for global land cover mapping based on weakly annotated samples.

Last Updated On: 
Mon, 01/25/2021 - 09:03

This dataset comes up as a benchmark dataset for machines to automatically recognizing the handwritten assamese digists (numerals) by extracting useful features by analyzing the structure. The Assamese language comprises of a total of 10 digits from 0 to 9. We have collected a total of 516 handwritten digits from 52 native assamese people irrespective of their age (12-86 years), gender, educational background etc. The digits are captured in .jpeg format using a paint mobile application developed by us which automatically saves the images in the internal storage of the mobile.


An accurate and reliable image-based quantification system for blueberries may be useful for the automation of harvest management. It may also serve as the basis for controlling robotic harvesting systems. Quantification of blueberries from images is a challenging task due to occlusions, differences in size, illumination conditions and the irregular amount of blueberries that can be present in an image. This paper proposes the quantification per image and per batch of blueberries in the wild, using high definition images captured using a mobile device.


In order to increase the diversity in signal datasets, we create a new dataset called HisarMod, which includes 26 classes and 5 different modulation families passing through 5 different wireless communication channel. During the generation of the dataset, MATLAB 2017a is employed for creating random bit sequences, symbols, and wireless fading channels. 



As one of the research directions at OLIVES Lab @ Georgia Tech, we focus on the robustness of data-driven algorithms under diverse challenging conditions where trained models can possibly be depolyed. To achieve this goal, we introduced a large-sacle (~1.72M frames) traffic sign detection video dataset (CURE-TSD) which is among the most comprehensive datasets with controlled synthetic challenging conditions. The video sequences in the 


As one of the research directions at OLIVES Lab @ Georgia Tech, we focus on the robustness of data-driven algorithms under diverse challenging conditions where trained models can possibly be depolyed.