Deep Learning

This LTE_RFFI project sets up an LTE device radio frequency fingerprint identification system using deep learning techniques. The LTE uplink signals are collected from ten different LTE devices using a USRP N210 in different locations. The sampling rate of the USRP is 25 MHz. The received signal is resampled to 30.72 MHz in Matlab. Then, the signals are processed and saved in the MAT file form. More details about the datasets can be found in the README document.

Categories:
911 Views

5G Network slicing is one of the key enabling technologies that offer dedicated logical resources to different applications on the same physical network. However, a Denial-of-Service (DoS) or Distributed Denial-of-Service (DDoS) attack can severely damage the performance and functionality of network slices. Furthermore, recent DoS/DDoS attack detection techniques are based on the available data sets which are collected from simulated 5G networks rather than from 5G network slices.

Categories:
3552 Views

Just Recognizable Distortion (JRD) refers to the minimum distortion that notably affects the recognition performance of a machine vision model. If a distortion added to images or videos falls within this JRD threshold, the degradation of the recognition performance will be unnoticeable. Based on this JRD property, it will be useful to Video Coding for Machine (VCM) to minimize the bit rate while maintaining the recognition performance of compressed images.

Categories:
383 Views

This LTE_RFFI project sets up an LTE device radio frequency fingerprint identification system using deep learning techniques. The LTE uplink signals are collected from ten different LTE devices using a USRP N210 in different locations. The sampling rate of the USRP is 25 MHz. The received signal is resampled to 30.72 MHz in Matlab and is saved in the MAT file form. The corresponding processed signals are included in the dataset. More details about the datasets can be found in the README document.

Categories:
449 Views

This dataset contains the Supplementary Information of the article "Discovering Mathematical Patterns Behind HIV-1 Genetic Recombination: a new methodology to identify viral features" (Manuscript DOI: 10.1109/ACCESS.2023.3311752).

Categories:
296 Views

In data file (.rar) contains 16 files in .mat format, where origin data after UMAP for training.mat is  the original training data and the others are the experimental result data. data1_*.mat is the model test result file containing the simulation results (test_simu_*), model output (output_test_*), and error (error_*).

Categories:
39 Views

Surveillance videos taken in unconstrained environments can be tampered with due to different environmental factors and malicious human activities. They often blur the video content and introduce difficulty in identifying the events in the scene. The problem is particularly acute for smart surveillance systems that need to make real-time decisions based on the video. Automatic detection of the blur anomalies in the video is crucial to these systems. In this research, a learning-based approach for camera blur detection is proposed.

Categories:
680 Views

In agriculture, the development of early treatment techniques for plant leaf diseases can be significantly enhanced by employing precise and rapid automatic detection methods. Within this realm of research, two common scenarios encountered in real field cases are the identification of different severity stages of diseases and the detection of multiple pathogens simultaneously affecting a single plant leaf. One major challenge faced in this area is the lack of publicly available datasets that contain images captured under these specific conditions.

Categories:
218 Views

AndalUnmixingRGB is a Sentinel-2 satellite digital RGB imagery enriched with environmental ancillary data and designed for blind spectral unmixing using deep learning. Generally, spectral unmixing involves two main tasks: spectral signature identification of different available land use/cover types in the analyzed hyperspectral or multispectral imagery (endmember identification task) and their respective proportions measurement (abundance estimation task).

Categories:
236 Views

This Dataset used a non-invasive blood group prediction approach using deep learning. Rapid and meticulous prediction of blood type is a major step during medical emergency before supervising the red blood cell, platelet, and plasma transfusion. Any small mistake during transfer of blood can cause death. In conventional pathological assessment, the blood test is conducted using automated blood analyser; however, it results into time taking process.

Categories:
2664 Views

Pages