Wearable Sensing
The Firearm Recoil Dataset was collected utilizing a wrist worn accelerometer to record the recoil generated from one subject’s use of 15 different firearms of the Handgun, Rifle and Shotgun class. The type of the firearm based on its ability to auto-load or not is also denoted.
- Categories:
a novel two-electrode, frequency-scan electrical impedance tomography (EIT) system for gesture recognition
- Categories:
The research were incorporated an extended cohort monitoring campaign, validation of an existing exposure model and development of a predictive model for COPD exacerbations evaluated against historical electronic health records.
A miniature personal sensor unit were manufactured for the study from a prototype developed at the University of Cambridge. The units monitored GPS position, temperature, humidity, CO, NO, NO2, O3, PM10 and PM2.5.
- Categories:
Any work using this dataset should cite this paper as follows:
Nirmalya Thakur and Chia Y. Han, "Country-Specific Interests towards Fall Detection from 2004–2021: An Open Access Dataset and Research Questions", Journal of Data, Volume 6, Issue 8, pp. 1-21, 2021.
Abstract
- Categories:
Objective: Analyzing human motion is essential for diagnosing movement disorders and guiding rehabilitation for conditions like osteoarthritis, stroke, and Parkinson's disease. Optical motion capture systems are the standard for estimating kinematics, but the equipment is expensive and requires a predefined space. While wearable sensor systems can estimate kinematics in any environment, existing systems are generally less accurate than optical motion capture.
- Categories:
This dataset is in support of my Research paper 'Detection of Pancreatic,Ovarian & Prostate Tumor, Cancer and Treatment by Ablation'.Due to computer crash, all work, datasets and old papers lost. Re-work may be submitted.
For Machine design, pls refer, open-access page 'Data and Designs of B-Machines'
- Categories:
This dataset consists of measurements from a foot-mounted inertial measurement unit (IMU). In total, we provide data from five different test subjects travelling over more than 7.6 km. The data are combined with various forms of ground truth positioning information that can be used to evaluate the accuracy of a zero-velocity-aided, foot-mounted inertial navigation system (INS).
- Categories: