Wearable Sensing

Nowadays, more and more machine learning models have emerged in the field of sleep staging. However, they have not been widely used in practical situations, which may be due to the non-comprehensiveness of these models' clinical and subject background and the lack of persuasiveness and guarantee of generalization performance outside the given datasets. Meanwhile, polysomnogram (PSG), as the gold standard of sleep staging, is rather intrusive and expensive. In this paper, we propose a novel automatic sleep staging architecture calle

Categories:
176 Views

Human activity data based on wearable sensors, such as the Inertial Measurement Unit (IMU), have been widely used in human activity recognition. However, most publicly available datasets only collected data from few body parts and the type of data collected is relatively homogeneous. Activity data from local body parts is challenging for recognizing specific activities or complex activities. Hence, we create a new  HAR dataset which is colledted from the project named MPJA HAD: A Multi-Position Joint Angles Dataset for Human Activity Recognition Using Wearable Sensors.

Categories:
1485 Views

Human arm motion data including forearm, upper-arm, and scapula link IMU modules beside SLAM reference position measurements compared to VICON as ground trouth.

Categories:
389 Views

We are presenting electromyography (EMG) and metabolic cost data collected during the optimization of a semi-active hip exoskeleton concept using impedance control at varying walking speeds. We collected 2-minute estimations of metabolic cost across 30 combinations of impedance parameters (stiffness and reference angle) to predict the most metabolically beneficial parameter set.

Categories:
200 Views

Please cite the following paper when using this dataset:

N. Thakur and C.Y. Han, “An Exploratory Study of Tweets about the SARS-CoV-2 Omicron Variant: Insights from Sentiment Analysis, Language Interpretation, Source Tracking, Type Classification, and Embedded URL Detection,” Journal of COVID, 2022, Volume 5, Issue 3, pp. 1026-1049

Abstract

Categories:
1671 Views

The use of modern Mobile Brain-Body imaging techniques, combined with hyperscanning (simultaneous and synchronous recording of brain activity of multiple participants) has allowed researchers to explore a broad range of different types of social interactions from the neuroengineering perspective. In specific, this approach allows to study such type of interactions under an ecologically valid approach.

Categories:
374 Views

Please cite the following paper when using this dataset:

N. Thakur, “MonkeyPox2022Tweets: A large-scale Twitter dataset on the 2022 Monkeypox outbreak, findings from analysis of Tweets, and open research questions,” Infect. Dis. Rep., vol. 14, no. 6, pp. 855–883, 2022, DOI: https://doi.org/10.3390/idr14060087.

Abstract

Categories:
3543 Views

These data sets are from the experimental part of the paper, mainly including hip angle obtained by IMU, plantar pressure obtained by FSR, gait division algorithm results, oscillator phase and so on. 

Categories:
118 Views

In this paper, we develop an internet of medical things (IoMT)-based electrocardiogram(ECG) recorder for monitoring heart conditions in practical cases. To remove noise from signals recorded by these non-clinical devices, we propose a cloud-based denoising approach that utilizes deep neural network techniques in the time-frequency domain through the two stages. Accordingly, we exploit the fractional Stockwell transform (FrST) to transfer the ECG signal into the time-frequency domain and apply the deep robust two-stage network (DeepRTSNet) for the noise cancellation.

Categories:
354 Views

The data we are providing this time is a part of the dataset which was used in our previous work, titled “Integrating Activity Recognition and Nursing Care Records: The System, Deployment, and a Verification Study”. The authors of this work proposed a theory that extending of start and end times of the activities can increase the prediction rate. The reason behind the theory is that many of the nurses provided the labels before or after completing an activity. In the paper, they verified and proved this theory.

Last Updated On: 
Thu, 06/30/2022 - 01:03

Pages