Security
- Categories:
Information:
This dataset was created for research on blockchain anomaly and fraud detection. And donated to IEEE data port online community.
https://github.com/epicprojects/blockchain-anomaly-detection
- Categories:
This is a dataset consisting of 8 features extracted from 70,000 monochromatic still images adapted from the Genome Project Standford's database, that are labeled in two classes: LSB steganography (1) and without LSB Steganography (0). These features are Kurtosis, Skewness, Standard Deviation, Range, Median, Geometric Mean, Hjorth Mobility, and Hjorth Complexity, all extracted from the histograms of the still images, including random spatial transformations. The steganographic function embeds five types of payloads, from 0.1 to 0.5.
- Categories:
This dataset is part of my PhD research on malware detection and classification using Deep Learning. It contains static analysis data: Top-1000 imported functions extracted from the 'pe_imports' elements of Cuckoo Sandbox reports. PE malware examples were downloaded from virusshare.com. PE goodware examples were downloaded from portableapps.com and from Windows 7 x86 directories.
- Categories:
This dataset is part of my PhD research on malware detection and classification using Deep Learning. It contains static analysis data: Raw PE byte stream rescaled to a 32 x 32 greyscale image using the Nearest Neighbor Interpolation algorithm and then flattened to a 1024 bytes vector. PE malware examples were downloaded from virusshare.com. PE goodware examples were downloaded from portableapps.com and from Windows 7 x86 directories.
- Categories:
This dataset is part of my PhD research on malware detection and classification using Deep Learning. It contains static analysis data (PE Section Headers of the .text, .code and CODE sections) extracted from the 'pe_sections' elements of Cuckoo Sandbox reports. PE malware examples were downloaded from virusshare.com. PE goodware examples were downloaded from portableapps.com and from Windows 7 x86 directories.
- Categories:
ASNM datasets include records consisting of many features, that express various properties and characteristics of TCP communications. These features are called Advanced Security Network Metrics (ASNM) and were designed with the intention to discern legitimate and malicious connections (especially intrusions).
- Categories:
This dataset is part of our research on malware detection and classification using Deep Learning. It contains 42,797 malware API call sequences and 1,079 goodware API call sequences. Each API call sequence is composed of the first 100 non-repeated consecutive API calls associated with the parent process, extracted from the 'calls' elements of Cuckoo Sandbox reports.
- Categories:
Collecting and analysing heterogeneous data sources from the Internet of Things (IoT) and Industrial IoT (IIoT) are essential for training and validating the fidelity of cybersecurity applications-based machine learning. However, the analysis of those data sources is still a big challenge for reducing high dimensional space and selecting important features and observations from different data sources.
- Categories:
Boğaziçi University DDoS dataset (BOUN DDoS) is generated in Boğaziçi University via Hping3 traffic generator software by flooding TCP SYN, and UDP packets. This dataset includes attack-free user traffic as well as attack traffic and suitable for evaluating network-based DDoS detection methods. Attacks are towards one victim server connected to the backbone router of the campus. Attack packets have randomly generated spoofed source IP addresses. The data-trace was recorded on the backbone and included over 4000 active hosts.
- Categories: