Digital signal processing
This dataset focuses on cooperative spectrum sensing in a cognitive radio network, where multiple secondary users collaborate to detect the presence of a primary user. We introduce multiple cooperative spectrum sensing schemes based on a tree deep neural network architecture, incorporating a one-dimensional convolutional neural network and a long short-term memory network. The primary objective of these schemes is to effectively learn the activity pattern of the primary user.
- Categories:
The large number and scale of natural and man-made disasters have led to an urgent demand for technologies that enhance the safety and efficiency of search and rescue teams. Semi-autonomous rescue robots are beneficial, especially when searching inaccessible terrains, or dangerous environments, such as collapsed infrastructures. For search and rescue missions in degraded visual conditions or non-line of sight scenarios, radar-based approaches may contribute to acquire valuable, and otherwise unavailable information.
- Categories:
In this investigation, the researchers have used a commercially available millimeter-wave (MMW) radar to collect data and assess the performance of deep learning algorithms in distinguishing different objects. The research looks at how varied ambiance factors, such as height, distance, and lighting, affect object recognition ability in both static and dynamic stages of the radar.
- Categories:
zip and czip format
- Categories:
The growth of the use of the Linux operating system in embedded systems projects brings to the spotlight essential questions about the capabilities of this operating system in real-time systems, in particular, soft real-time systems. In this context, the quantitative analysis of Linux-based embedded systems is the focus of this paper, which includes the evaluation of the latency time, jitter, and worst-case response time.
- Categories:
Radio Frequency (RF) signals transmitted by Global Navigation Satellite Systems (GNSS) are exploited as signals of opportunity in many scientific activities, ranging from sensing waterways and humidity of the terrain to the monitoring of the ionosphere. The latter can be pursued by processing the GNSS signals through dedicated ground-based monitoring equipment, such as the GNSS Ionospheric Scintillation and Total Electron Content Monitoring (GISTM) receivers.
- Categories:
This dataset contains trained weights to predict ECG abnormalities.
- Categories:
Interference signals degrade the performance of a global navigation satellite system (GNSS) receiver. Detection and classification of these interference signals allow better situational awareness and facilitate appropriate countermeasures. However, classification is challenging and processing-intensive, especially in severe multipath environments. This dataset is the result of a proposal for a low-resource interference detection and classification approach that combines conventional statistical signal processing approaches with machine learning (ML).
- Categories: