Computer Vision
Welcome to the Retinal Fundus Glaucoma Challenge! REFUGE was organized as a half day Challenge in conjunction with the 5th MICCAI Workshop on Ophthalmic Medical Image Analysis (OMIA), a Satellite Event of the MICCAI 2018 conference in Granada, Spain. The goal of the challenge is to evaluate and compare automated algorithms for glaucoma detection and optic disc/cup segmentation on a common dataset of retinal fundus images. With this challenge, we made available a large dataset of 1200 annotated retinal fundus images.
- Categories:
Pathologic Myopia Challenge (PALM), as a part of the serial challenge iChallenge, is organized as a half day Challenge, a Satellite Event of the ISBI 2019 conference in Venice, Italy. The PALM challenge focuses on the investigation and development of algorithms associated with the diagnosis of Pathological Myopia (PM) and segmentation of lesions in fundus photos from PM patients. The goal of the challenge is to evaluate and compare automated algorithms for the detection of pathological myopia on a common dataset of retinal fundus images.
- Categories:
For effectness verification of our proposed neural network, a total of 19,368 lab-made images of butterfly specimensspanning 48 sub-species areutilizedas testing samples, while 116,208 augmented images are employed for training.
- Categories:
This dataset contains laser scans of PCBs as explained in "Fault Diagnosis in Microelectronics Attachment via Deep Learning Analysis of 3D Laser Scans". On the left and right image, we have a closer look at one circuit
module of a PCB , before and after die attachment. Notice the different types of glue annotated as A, B, C, D and E. On each circuit there are four glue deposits on each type where approximately the same quantity of glue has been placed. As explained
- Categories:
test file
- Categories:
This is a new image-based handwritten historical digit dataset named ARDIS (Arkiv Digital Sweden). The images in ARDIS dataset are extracted from 15.000 Swedish church records which were written by different priests with various handwriting styles in the nineteenth and twentieth centuries. The constructed dataset consists of three single digit datasets and one digit strings dataset. The digit strings dataset includes 10.000 samples in Red-Green-Blue (RGB) color space, whereas, the other datasets contain 7.600 single digit images in different color spaces.
- Categories:
The date fruit dataset was created to address the requirements of many applications in the pre-harvesting and harvesting stages. The two most important applications are automatic harvesting and visual yield estimation. The dataset is divided into two subsets and each of them is oriented into one of these two applications. The first dataset consists of 8079 images of more than 350 date bunches captured from 29 date palms. The date bunches belong to five date types: Naboot Saif, Khalas, Barhi, Meneifi, and Sullaj.
- Categories:
Reference: Laschowski B, McNally W, McPhee J, and Wong A. (2019). Preliminary Design of an Environment Recognition System for Controlling Robotic Lower-Limb Prostheses and Exoskeletons. IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 868-873. DOI: 10.1109/ICORR.2019.8779540.
- Categories:
Occlusion, glare and secondary reflections formed due to and on the spectacles - results in poor detection, localization, and recognition of eye/face features. We term all the problems related to the usage of spectacles as The spectacle problem. Though several studies on the spectacle detection and removal have been reported in the literature, the study focusing on spectacle problem removal is very limited. One of the main reasons being, the nonavailability of a facial image database highlighting the spectacle problems.
- Categories: