Skip to main content

Computer Vision

Semantic segmentation is the topic of interest among deep learning researchers in the recent era.  It has many applications in different domains including, food recognition. In the case of food recognition, it removes the non-food background from the food portion. There is no large public food dataset available to train semantic segmentation models. We prepared a dataset named ’SEG-FOOD’[44] containing images of FOOD101, PFID, and Pakistani Food dataset and open-sourced the annotated dataset for future research. We annotated the images using JS Segment annotator.

Categories:

This dataset is in support of my Research paper 'Design of 6-DoF Combat Quadcopter'.

Preprint:   

The system is basic, on existing designs.It is very simple for any graduate,degree holder.

 

Related Claim : Novel ß Non-Linear Theory

Image Source: https://www.parrot.com/us/use-cases/military-and-defense

Categories:

The detection of settlements without electricity challenge track (Track DSE) of the 2021 IEEE GRSS Data Fusion Contest, organized by the Image Analysis and Data Fusion Technical Committee (IADF TC) of the IEEE Geoscience and Remote Sensing Society (GRSS), Hewlett Packard Enterprise, SolarAid, and Data Science Experts, aims to promote research in automatic detection of human settlements deprived of access to electricity using multimodal and multitemporal remote sensing data.

Categories:

A medium-scale synthetic 4D Light Field video dataset for depth (disparity) estimation. From the open-source movie Sintel. The dataset consists of 24 synthetic 4D LFVs with 1,204x436 pixels, 9x9 views, and 20–50 frames, and has ground-truth disparity values, so that can be used for training deep learning-based methods. Each scene was rendered with a clean pass after modifying the production file of Sintel with reference to the MPI Sintel dataset.

Categories:

The world faces difficulties in terms of eye care, including treatment, quality of prevention, vision rehabilitation services, and scarcity of trained eye care experts. Early detection and diagnosis of ocular pathologies would enable forestall of visual impairment. One challenge that limits the adoption of computer-aided diagnosis tool by ophthalmologists is the number of sight-threatening rare pathologies, such as central retinal artery occlusion or anterior ischemic optic neuropathy, and others are usually ignored.

Categories:

Computer vision in animal monitoring has become a research application in stable or confined conditions.

Detecting animals from the top view is challenging due to barn conditions.

In this dataset called ICV-TxLamb, images are proposed for the monitoring of lamb inside a barn.

This set of data is made up of two categories, the first is lamb (classifies the only lamb), the second consists of four states of the posture of lambs, these are: eating, sleeping, lying down, and normal (standing or without activity ).

Categories:

Wildfires are one of the deadliest and dangerous natural disasters in the world. Wildfires burn millions of forests and they put many lives of humans and animals in danger. Predicting fire behavior can help firefighters to have better fire management and scheduling for future incidents and also it reduces the life risks for the firefighters. Recent advance in aerial images shows that they can be beneficial in wildfire studies.

Categories: