Remote Sensing
Synthetic Aperture Radar (SAR) satellite images are used increasingly more for Earth observation. While SAR images are useable in most conditions, they occasionally experience image degradation due to interfering signals from external radars, called Radio Frequency Interference (RFI). RFI affected images are often discarded in further analysis or pre-processed to remove the RFI.
- Categories:

As a common dataset for change detection, its image can be divided into three parts: the image before the change, the image after the change, and the label image showing the changed area. This dataset is characterized by significant seasonal differences between bi-temporal image pairs, which makes up for some of the deficiencies in existing datasets. The labels for this dataset include some irregular changes, such as the appearance and disappearance of cars; but do not include seasonal changes, such as changes in the ground surface caused by snowfall.
- Categories:

Accurate detection and segmentation of apple trees are crucial in high throughput phenotyping, further guiding apple trees yield or quality management. A LiDAR and a camera were attached to the UAV to acquire RGB information and coordinate information of a whole orchard. The information was integrated by simultaneous localization and mapping network to form a dataset of RGB-colored point clouds. The dataset can be used for methods related to apple detection and segmentation based on point clouds.
- Categories:

This dataset provides the high-resolution remote senisng data regarding various coastline scenes.
- Categories:

This folder contains folders of images.
The original folder contains the non dehazed images, default and tuned contain the dehazed counterparts.
Default folder referes to the outputs obtained using an exponent of 0.8.
Tuned refers to the images with a PSNRBR of 54 or above.
The images in paper are kept in a seperate folder.
- Categories:

ocean front time-series
- Categories:
In this dataset, we provided the raw analog-to-digital-converter (ADC) data of a 77GHz mmwave radar for the automotive object detection scenario. The overall dataset contains approximately 19800 frames of radar data as well as synchronized camera images and labels. For each radar frame, its raw data has 4 dimension: samples (fast time), chirps (slow time), transmitters, receivers. The experiment radar was assembled from the TI AWR 1843 board, with 2 horizontal transmit antennas and 4 receive antennas.
- Categories: