Medical Imaging
Machine learning (ML) in the medical domain faces challenges due to limited high-quality data. This study addresses the scarcity of echocardiography images (echoCG) by generating synthetic data using state-of-the-art generative models. We evaluated a cycle-consistent generative adversarial network (CycleGAN), contrastive unpaired translation (CUT) method, and latent diffusion model (Stable Diffusion 1.5).
- Categories:
<p class="MsoNormal"><span lang="EN-US">This is a dataset about Helicobacter pylori (H.pylori). The dataset consists of 994 pathology images of H. pylori stained using immunohistochemistry. Each image is of size 1916x1010 pixels and is accompanied by an annotation file. The annotations are done using point annotations, where the annotation file records the coordinates of H. pylori in each image.</span><span><span lang="EN-US">The dataset provides a valuable resource for researchers and practitioners working in the field of H.
- Categories:
Chronic wounds pose an ongoing health concern globally, largely due to the prevalence of conditions such as diabetes and leprosy's disease. The standard method of monitoring these wounds involves visual inspection by healthcare professionals, a practice that could present challenges for patients in remote areas with inadequate transportation and healthcare infrastructure. This has led to the development of algorithms designed for the analysis and follow-up of wound images, which perform image-processing tasks such as classification, detection, and segmentation.
- Categories:
This dataset named "Chest X-ray images for Multiple diseases" is a medium sized dataset we collected and produced in 2024 from various sources to predict various Chest-X-ray diseases using Deep learning techniques, primarily from Radiopaedia.org, coronacases.org, Kaggle contains 1000 images for each of the disease namely TB,pneumonia,Covid-19,Normal. This dataset is designed to support the evaluation and development of algorithms to predict various chest x-ray diseases.
- Categories:
This dataset contains MRI scans from 5 MS and 5 NMO cases from the Universiti Teknologi MARA (UiTM) hospital Malaysia. The brain lesions in the MRI scans have been annotated by a consultant radiologist from Pakistan Institute of Medical Sciences (PIMS) Islamabad Pakistan. The ground truth lesion masks are available as png files, whereas the brain scans are available as jpg files.
- Categories:
This dataset comprises a comprehensive collection of augmented MRI images of brain tumors, organized into two distinct folders: 'Yes' and 'No'. The 'Yes' folder contains 9,828 images of brain tumors, while the 'No' folder includes 9,546 images that do not exhibit brain tumors, resulting in a total of 19,374 images. All images are in PNG format, ensuring high-quality and consistent resolution suitable for various machine learning and medical imaging research applications.
- Categories:
This dataset consists of 462 field of views of Giemsa(dye)-stained and field(dye)-stained thin blood smear images acquired using an iPhone 10 mobile phone with a 12MP camera. The phone was attached to an Olympus microscope with 1000× objective lens. Half of the acquired images are red blood cells with a normal morphology and the other half have a Rouleaux formation morphology.
- Categories:
This dataset acompanies our article titled "Insights into traditional Large Deformation Diffeomorphic Metric Mapping and unsupervised deep-learning for diffeomorphic registration and their evaluation", Computers in Biology and Medicine, 2024. This paper explores the connections between traditional Large Deformation Diffeomorphic Metric Mapping methods and unsupervised deep-learning approaches for non-rigid registration, particularly emphasizing diffeomorphic registration.
- Categories:
We conducted a retrospective collection, covering 167 children who were examined and treated at the Children's Hospital of Chongqing Medical University from March 12, 2014 to January 7, 2022, with a total of 1634 IRI image sequences. This study has been registered with the Chinese Clinical Trial Registry, registration number ChiCTR2200058971, and complied with the provisions of the Declaration of Helsinki (DoH). The study was approved by the Institutional Ethical Review Board (document number 2022,69), and a waiver of informed consent was obtained.
- Categories:
The overall ACDC dataset was created from real clinical exams acquired at the University Hospital of Dijon. Acquired data were fully anonymized and handled within the regulations set by the local ethical committee of the Hospital of Dijon (France). Our dataset covers several well-defined pathologies with enough cases to (1) properly train machine learning methods and (2) clearly assess the variations of the main physiological parameters obtained from cine-MRI (in particular diastolic volume and ejection fraction).
- Categories: