Medical Imaging

This simulation dataset contains five types of data: resolutions, vessels, vessel stenosis, tumors, and shape combinations. There are a total of 1000 original binary images. Besides, we set different gray values on images with multiple connected domains to simulate different concentration of magnetic nanoparticles. Next, the images are subjected to operations such as image inversion and image rotation. The final dataset contains 20,000 images. we applied the X-space method based on the X-space theory and we generated the simulated image of magnetic particle imaging.

Categories:
204 Views

This Dataset used a non-invasive blood group prediction approach using deep learning. Rapid and meticulous prediction of blood type is a major step during medical emergency before supervising the red blood cell, platelet, and plasma transfusion. Any small mistake during transfer of blood can cause death. In conventional pathological assessment, the blood test is conducted using automated blood analyser; however, it results into time taking process.

Categories:
2189 Views

Tuberculosis (TB) remains a major global health problem with high incidence and mortality rates worldwide. In recent years, with the rapid development of computer-aided diagnosis (CAD) tools, CAD has played an increasingly important role in supporting tuberculosis diagnosis. However, the development of CAD for TB diagnosis relies heavily on well-annotated computerized tomography (CT) datasets. Unfortunately, the currently available annotations in TB CT datasets are still limited, which hinders the development of CAD tools for TB diagnosis to some extent.

Categories:
33 Views

Tuberculosis (TB) remains a major global health problem with high incidence and mortality rates worldwide. In recent years, with the rapid development of computer-aided diagnosis (CAD) tools, CAD has played an increasingly important role in supporting tuberculosis diagnosis. However, the development of CAD for TB diagnosis relies heavily on well-annotated computerized tomography (CT) datasets. Unfortunately, the currently available annotations in TB CT datasets are still limited, which hinders the development of CAD tools for TB diagnosis to some extent.

Categories:
9 Views

Accurate detection and segmentation of brain tumors is critical for medical diagnosis. We propose a novel framework Two-Stage Generative Model (TSGM) that combines Cycle Generative Adversarial Network (CycleGAN) and Variance Exploding stochastic differential equation using joint probability (VE-JP) to improve brain tumor segmentation. TSGM was trained on the BraTs2020 brain tumor dataset.

Categories:
12 Views

Use of medical devices in the magnetic resonance environment is regulated by standards that include the ASTM-F2213 magnetically induced torque. This standard prescribes five tests. However, none can be directly applied to measure very low torques of slender lightweight devices such as needles. Methods: We present a variant of an ASTM torsional spring method that makes a “spring” of 2 strings that suspend the needle by its ends. The magnetically induced torque on the needle causes it to rotate. The strings tilt and lift the needle.

Categories:
250 Views

We introduce a high-performance computer vision based Intraveneous (IV) infusion speed measurement system as a camera application on an iPhone or Android phone. Our system uses You Only Look Once version 5 (YOLOv5) as it was designed for real-time object detection, making it substantially faster than two-stage algorithms such as R-CNN. In addition, YOLOv5 offers greater precision than its predecessors, making it more competitive with other object detection methods.

Categories:
5 Views

— Medical image segmentation is a crucial aspect of medical image processing, and has been widely used in the detection and clinical diagnosis for brain, lung, liver, heart and other diseases. In this paper, we propose a novel multimodal mutual attention network, called MMAUNet, for medical image segmentation. MMA-UNet is divided into two parts. The first part obtains more highdimensional features by skip connection and improved network structure.

Categories:
266 Views

This robust dataset is extracted from the International Skin Imaging Collaboration (ISIC). Similar datasets are used for the annual ISIC Challenge, presenting an opportunity for the computer science community to produce algorithms that can outperform professional dermatology. The submitted dataset contains approximately 1,000 images of malignant melanomas, as well as approximately 1,000 images of benign melanomas.

Categories:
2914 Views

Pages