Medical Imaging

Diabetic Retinopathy is the second largest cause of blindness in diabetic patients. Early diagnosis or screening can prevent the visual loss. Nowadays , several computer aided algorithms have been developed to detect the early signs of Diabetic Retinopathy ie., Microaneurysms. The AGAR300 dataset presented here facilitate the researchers for benchmarking MA detection algorithms using digital fundus images. Currently, we have released the first set of database which consists of 28 color fundus images, shows the signs of Microaneurysm.

Categories:
1900 Views

The dataset is genrated by the fusion of three publicly available datasets: COVID-19 cxr image (https://github.com/ieee8023/covid-chestxray-dataset), Radiological Society of North America (RSNA) (https://www.kaggle.com/c/rsna-pneumonia-detection-challenge), and U.S.  national  library  of  medicine  (USNLM) collected  Montgomery  country - NLM(MC) (http

Categories:
1341 Views

We chose 8 publicly available CT volumes of COVID-19 positive patients which were available from https://doi.org/10.5281/zenodo.3757476 and used 3D slicer to generate volumetric annotations of 512*512 dimension for 5 lung lobes namely right upper lobe, right middle lobe, right lower lobe, left upper lobe and left lower lobe. These annotations are validated by a radiologist with over 15 years of experience. 

Categories:
675 Views

This is a dataset of diabetic foot. We are preparing to publish this dataset.

Categories:
653 Views

The data uploaded here shall support the paper 

Decision Tree Analysis of  ...

which has been submitted to IEEE Transactions on Medical Imaging (2020, September 25) by the authors

Julian Mattes, Wolfgang Fenz, Stefan Thumfart, Gerhard Haitchi, Pierre Schmit, Franz A. Fellner

During review the data shall only be visible for the reviewers of this paper. Afterwards this abstract will be modified and complemented and a dataset image will be uploaded.

Categories:
170 Views

Microscopic image based analysis plays an important role in histopathological computer based diagnostics. Identification of childhood medulloblastoma and its proper subtype from biopsy tissue specimen of childhood tumor is an integral part for prognosis.The dataset is of Childhood medulloblastoma (CMB) biopsy samples. The images are of 10x and 100x microscopic magnifications, uploaded in separate folders. The images consist of normal brain tissue cell samples and CMB cell samples of different WHO defined subtypes. An excel sheet is also uploaded for ease of data description.

Categories:
1043 Views

70 images with a total of more than 2 GB of data have been employed for the experimental evaluation. All images are acquired at 24 bpp with 8 bits per pixel per component (bpppc). They depict various tissues of different sizes and stained with Hematoxylin and Eosin (H\&E) stain. The tissues employed in the experiments are skin fibroblast (SKNF), endometrial (END), lung (LNGF), embryonic stem cells (ES), kidney clear cell carcinoma (KIRC), pancreas (PANC), brain glioblastoma multiforme (GBM), colon adenocarcinoma (COAD), and lymphatic (LYMP).

Categories:
190 Views

Giemsa-stained thin blood smear slides from 150 P. falciparum-infected and 50 healthy patients were collected and photographed at Chittagong Medical College Hospital, Bangladesh. The smartphone’s built-in camera acquired images of slides for each microscopic field of view.

Categories:
741 Views

Model .h5 files and .pb files for robustly detecting glaucoma from optical coherence tomography (OCT) images and for interpretability analysis via testing with concept activation vectors (TCAVs by Been Kim et al.). Further details described in paper "Robust and Interpretable Convolutional Neural Networks to Detect Glaucoma in OCT Images" in preparation/under review.

Categories:
332 Views

Pages