Image Fusion

There is an industry gap for publicly available electric utility infrastructure imagery.  The Electric Power Research Institute (EPRI) is filling this gap to support public and private sector AI innovation.  This dataset consists of ~30,000 images of overhead Distribution infrastructure.  These images have been anonymized, reviewed, and .exif image-data scrubbed.  EPRI intends to label these data to support its own research activities.  As these labels are created, EPRI will periodically update this dataset with those data.

Update: July 2022

Categories:
1416 Views

This dataset was acquired at the Radboud University Medical Center, Nijmegen, the Netherlands and enriched with landmarks by Fraunhofer MEVIS. It consists of nine datasets of consecutive sections, each containing four slides stained with H&E, CD8, CD45, Ki67, respectively.

Categories:
350 Views

We present here an annotated thermal dataset which is linked to the dataset present in https://ieee-dataport.org/open-access/thermal-visual-paired-dataset

To our knowledge, this is the only public dataset at present, which has multi class annotation on thermal images, comprised of 5 different classes.

This database was hand annotated over a period of 130 work hours.

Categories:
636 Views

<p>This is the image dataset for satellite image processing&nbsp; which is a collection therml infrared and multispectral images .</p>

Categories:
1737 Views

WITH the advancement in sensor technology, huge amounts of data are being collected from various satellites. Hence, the task of target-based data retrieval and acquisition has become exceedingly challenging. Existing satellites essentially scan a vast overlapping region of the Earth using various sensing techniques, like multi-spectral, hyperspectral, Synthetic Aperture Radar (SAR), video, and compressed sensing, to name a few.

Categories:
950 Views

WITH the advancement in sensor technology, huge amounts of data are being collected from various satellites. Hence, the task of target-based data retrieval and acquisition has become exceedingly challenging. Existing satellites essentially scan a vast overlapping region of the Earth using various sensing techniques, like multi-spectral, hyperspectral, Synthetic Aperture Radar (SAR), video, and compressed sensing, to name a few.

Categories:
342 Views

WITH the advancement in sensor technology, huge amounts of data are being collected from various satellites. Hence, the task of target-based data retrieval and acquisition has become exceedingly challenging. Existing satellites essentially scan a vast overlapping region of the Earth using various sensing techniques, like multi-spectral, hyperspectral, Synthetic Aperture Radar (SAR), video, and compressed sensing, to name a few.

Categories:
207 Views

With the advancement in sensor technology, huge amounts of data are being collected from various satellites. Hence, the task of target-based data retrieval and acquisition has become exceedingly challenging. Existing satellites essentially scan a vast overlapping region of the Earth using various sensing techniques, like multi-spectral, hyperspectral, Synthetic Aperture Radar (SAR), video, and compressed sensing, to name a few.

Categories:
222 Views

With the advancement in sensor technology, huge amounts of data are being collected from various satellites. Hence, the task of target-based data retrieval and acquisition has become exceedingly challenging. Existing satellites essentially scan a vast overlapping region of the Earth using various sensing techniques, like multi-spectral, hyperspectral, Synthetic Aperture Radar (SAR), video, and compressed sensing, to name a few.

Categories:
212 Views

As part of the 2018 IEEE GRSS Data Fusion Contest, the Hyperspectral Image Analysis Laboratory and the National Center for Airborne Laser Mapping (NCALM) at the University of Houston are pleased to release a unique multi-sensor optical geospatial representing challenging urban land-cover land-use classification task. The data were acquired by NCALM over the University of Houston campus and its neighborhood on February 16, 2017 between 16:31 and 18:18 GMT.

Categories:
3727 Views

Pages