Biomedical and Health Sciences

Visual representations are always better than narrations in accordance to children, for better understanding. This is quite advantageous in learning school lessons and it eventually helps in engaging the children and enhancing their imaginative skills. Using natural language processing techniques and along the computer graphics it is possible to bridge the gap between these two individual fields, it will not only eliminate the existing manual labor involved instead it can also give rise to efficient and effective system frameworks that can form a foundation for complex applications.


When sleep matters for the promotion of heart health, multidisciplinary research is essential. The present dataset is fetched from the National Health And Nutrition Survey (NHANES), with the main consumption of carbohydrates, bedtime and waking hours, and High sensitivity C- Reactive Protein (HSCRP) translating cardiovascular risk. As the outcome variable, HSCRP records from 5,665 participants are available in this dataset for analysis purpose.


Transcranial Doppler (TCD) echo data was recorded from healthy adults and neurocritical care adult patients. The insonated cerebral vessels were the middle cerebral artery (MCA) and the internal carotid artery (ICA). The ultrasound system used in this study was the Philips CX50.


In an infectious disease outbreak the identification of pathogen genome sequence variants provides epidemiologists with high-resolution transmission diagnostics that can help cluster patients; identify cohorts of individuals who need testing; and identify new variants that may compromise existing vaccines, therapeutics, and low-resolution detection diagnostics.  The Oxford Nanopore MinION™ is a uniquely portable nucleic acid sequencing device that has been used in limited-resource settings for this purpose, e.g., during the 2014-2016 outbreak of Ebolavirus (EBOV) disease in Africa.  We desc


Endoscopy is a widely used clinical procedure for the early detection of cancers in hollow-organs such as oesophagus, stomach, and colon. Computer-assisted methods for accurate and temporally consistent localisation and segmentation of diseased region-of-interests enable precise quantification and mapping of lesions from clinical endoscopy videos which is critical for monitoring and surgical planning. Innovations have the potential to improve current medical practices and refine healthcare systems worldwide.

Last Updated On: 
Sat, 02/27/2021 - 05:11

Nextmed project is a software platform for the segmentation and visualization of medical images. It consist on a series of different automatic segmentation algorithms for different anatomical structures and  a platform for the visualization of the results as 3D models.

This dataset contains the .obj and .nrrd files that correspond to the results of applying our automatic lung segmentation algorithm to the LIDC-IDRI dataset.

This dataset relates to 718 of the 1012 LIDC-IDRI scans.


For more information please take a look at the corresponding paper (DOI: 10.1109/JBHI.2019.2963786)


This dataset provides the ECG signals recorded in ambulatory (moving) conditions of subjects. The ambulatory ECG (A-ECG) data acquired with two different recorders viz. Biopac MP36 Acquisition system and a self-developed wearable ECG recorder are made available. Total 10 subjects' (with avg. age of 27 years, 1 female and 9 males) ECG signals with four body movements- Left & Right arm up/down, Sitting down & standing up and Waist twist are uploaded.

An EEG signals dataset is also provided here.


This dataset contains light-field microscopy images and converted sub-aperture images. 


The folder with the name "Light-fieldMicroscopeData" contains raw light-field data. The file LFM_Calibrated_frame0-9.tif contains 9 frames of raw light-field microscopy images which has been calibrated. Each frame corresponds to a specific depth. The 9 frames cover a depth range from 0 um to 32 um with step size 4 um. Files with name LFM_Calibrated_frame?.png are the png version for each frame.



The migration of cancer cells is highly regulated by the biomechanical properties of their local microenvironment. Using 3D scaffolds of simple composition, several aspects of cancer cell mechanosensing (signal transduction, EMC remodeling, traction forces) have been separately analyzed in the context of cell migration. However, a combined study of these factors in 3D scaffolds that more closely resemble the complex microenvironment of the cancer ECM is still missing.