Skip to main content

Machine Learning

Air travel is one of the most used ways of transit in our daily lives. So it's no wonder that more and more people are sharing their experiences with airlines and airports using web-based online surveys. This dataset aims to do topic modeling and sentiment analysis on Skytrax (airlinequality.com) and Tripadvisor (tripadvisor.com) postings where there is a lot of interest and engagement from people who have used it or want to use it for airlines.

Categories:

The Baseline set described in the IEEE article (https://ieeexplore.ieee.org/document/10077565)   as Baseline_set  contains 1442450 rows, where the number of rows varied between 15395 and 197542 for the 16 subjects;  the average per subject being 69095 rows. The data set is filtered and standardized as described in III.C in the submission . The other data sets used in the article are derived from Baseline set.

Categories:

Vision plays an important role when transitioning between different locomotor tasks (e.g., level-ground walking to stair ascent) by sensing the environment prior to physical interactions. Here we developed StairNet to support the development and comparison of deep learning models for visual recognition of stairs. The dataset builds on ExoNet – the largest open-source dataset of egocentric images of real-world walking environments.

Categories:

Using acoustic waves to estimate fluid concentration is a promising technology due to its practicality and non-intrusive aspect, especially for medical applications. The existing approaches are exclusively based on the correlation between the reflection coefficient and the concentration. However, these techniques are limited by the high sensitivity of the reflection coefficient to environmental conditions changes, even slight ones. This introduces inaccuracies that cannot be tolerated in medical applications.

Categories:

It is a combination of statistics from various cricket information sources like cricbuzz, espncricinfo, etc. The dataset has records right from the originating year of the IPL i.e., 2008 up to the previous year 2021.

 

The dataset has been encoded using a manual encoding technique where certain columns have been altered based on their value type

Categories:

A commonly used definition of spatial disorientation (SD) in aviation is "an erroneous sense of one’s position and motion relative to the plane of the earth’s surface". There exists a wide range of SD use-cases dictated by situational factors, therefore SD has been predominantly studied using reduced motion detection experimental contexts in isolation. The study of SD by use-case makes it difficult to understand general SD occurrence and thus provide viable solutions. To investigate SD in a generalized manner, a two-part Human Activity Recognition (HAR) study was performed.

Categories:

This dataset was prepared to aid in the creation of a machine learning algorithm that would classify the white blood cells in thin blood smears of juvenile Visayan warty pigs. The creation of this dataset was deemed imperative because of the limited availability of blood smear images collected from the critically endangered species on the internet. The dataset contains 3,457 images of various types of white blood cells (JPEG) with accompanying cell type labels (XLSX).

Categories:

Parasitic infections have been recognised as one of the most significant causes of illnesses by WHO. Most infected persons shed cysts or eggs in their living environment, and unwittingly cause transmission of parasites to other individuals. Diagnosis of intestinal parasites is usually based on direct examination in the laboratory, of which capacity is obviously limited.

Categories:

The proliferation of efficient edge computing has enabled a paradigm shift of how we monitor and interpret urban air quality. Coupled with the dense spatiotemporal resolution realized from large-scale wireless sensor networks, we can achieve highly accurate realtime local inference of airborne pollutants. In this paper, we introduce a novel Deep Neural Network architecture targeted at latent time-series regression tasks from continuous, exogenous sensor measurements, based on the Transformer encoder scheme and designed for deployment on low-cost power-efficient edge processors.

Categories: