Skip to main content

Machine Learning

Slow-rate DDoS attacks are recent threats targeting next-generation networks such as IoT, 5G, etc. Unlike conventional high-rate DDoS, slow-rate DDoS have not been deeply studied, mainly due to the limited number of existing datasets with real traces.

Categories:

Reference Evapotranspiration (ETo) is the basic element of smart irrigation water management for sustainable developments in agriculture. Penman-Monteith (FAO-56 PM) is the standard method of ETo. The FAO-56 PM is complex in nature due to the requirements of many climatic conditions. Many existing machine learning-based solutions for simplification of ETo are limited to a specific area and not in accordance with the standard method FAO-56 PM.

Categories:

The dataset used in this study was derived from data collected from two courses offered on the University of Jordan's E-learning Portal during the second semester of 2020, namely "Computer Skills for Humanities Students" (CSHS) and "Computer Skills for Medical Students" (CSMS). Over the sixteen-week duration of each course, students participated in various activities such as reading materials, video lectures, assignments, and quizzes. To preserve student privacy, the log activity of each student was anonymized.

Categories:

BIMCV-COVID19+ dataset is a large dataset with chest X-ray images CXR (CR, DX) and computed tomography (CT) imaging of COVID-19 patients along with their radiographic findings, pathologies, polymerase chain reaction (PCR), immunoglobulin G (IgG) and immunoglobulin M (IgM) diagnostic antibody tests and radiographic reports from Medical Imaging Databank in Valencian Region Medical Image Bank (BIMCV).

Categories:

Data preprocessing is a fundamental stage in deep learning modeling and serves as the cornerstone of reliable data analytics. These deep learning models require significant amounts of training data to be effective, with small datasets often resulting in overfitting and poor performance on large datasets. One solution to this problem is parallelization in data modeling, which allows the model to fit the training data more effectively, leading to higher accuracy on large data sets and higher performance overall.

Categories:

This dataset containg 1900+ images divided into fresh oranges and rotten oranges. In an orange packing factory, a video was recorded, by placing the camera parallel and above the oranges conveyor. The video was captured for 10 minutes with a quality of Ultra High Definition (4K) with 60 frames per second and a High Dynamic Range feature. The video was changed from High Dynamic Range to Standard Dynamic Range by the use of Splice - Video Editor & Maker software. The video is inserted to developed algorithm operating video processing on it and creating the frames.

Categories:

Buildings are essential components of urban areas. While research on the extraction and 3D reconstruction of buildings is widely conducted, information on fine-grained roof types of buildings is usually ignored. This limits the potential of further analysis, e.g., in the context of urban planning applications. The fine-grained classification of building roof type from satellite images is a highly challenging task due to ambiguous visual features within the satellite imagery.

Categories:

Driving practices while HR physiology and pre- and post-EDA were acquired. Stress levels are also rated on a 1-5 scale. The gamer's steering wheel angle, pedals, and steering wheel buttons associated with the driving activity are tracked every 10 msec. The normalized data were stored in Figure 1 in the .xlsx file. Using the Balanced Latin Square method, participants develop each level to avoid level learning when designing experiments with multiple conditions.

 

Physiological and emotional states during virtual driving

Categories: