Image Processing

The current maturity of autonomous underwater vehicles (AUVs) has made their deployment practical and cost-effective, such that many scientific, industrial and military applications now include AUV operations. However, the logistical difficulties and high costs of operating at-sea are still critical limiting factors in further technology development, the benchmarking of new techniques and the reproducibility of research results. To overcome this problem, we present a freely available dataset suitable to test control, navigation, sensor processing algorithms and others tasks.


Results(including reported and extra results) for LSstab. Please refer to our paper "Efficient real-time video stabilization with a novel least squares formulation and parallel AC-RANSAC".


This dataset is flotation froth sequence images, a total of 2386 folders, that is, 2386 groups of froth sequence images. The data comes from a mine in southern China, and the digital camera collected the froth videos every 5 minutes during the period from 2019.08.01 to 2019.12.01. Each group of froth sequence images contains 12 consecutive frames and the sampling time is 0.4s. This dataset is suitable for image processing, pattern recognition, and artificial intelligence.


Deep learning undoubtedly has had a huge impact on the computer vision community in recent years. In light field imaging, machine learning-based applications have significantly outperformed their conventional counterparts. Furthermore, multi- and hyperspectral light fields have shown promising results in light field-related applications such as disparity or shape estimation. Yet, a multispectral light field data\-set, enabling data-driven approaches, is missing. Therefore, we propose a new synthetic multispectral light field dataset with depth and disparity ground truth.


ALL-IDB (Acute Lymphoblastic Leukemia) Image Database for Image Processing

ALL-IDB dataset comprises of two subsets among them one subset has 260 segmented lymphocytes of them 130 belongs to the leukaemia and the remaining 130 belongs to the non leukaemuia class it requires only classification. second subset has around 108 non segmented blood images that belongs to the leukaemia and non leukaemia groups thus requires segmentation and classification.




The dynamic adaptive streaming over HTTP provides an inter-operable solution to overcome the volatile network conditions, but its complex characteristic brings new challenges to objective video quality-of-experience (QoE) measurement. To test the generalizability and to facilitate the wide usage of QoE measurement techniques in real-world applications, we establish a new database named Waterloo Streaming QoE Database III (SQoE-III).


Optical Character Recognition (OCR) system is used to convert the document images, either printed or handwritten, into its electronic counterpart. But dealing with handwritten texts is much more challenging than printed ones due to erratic writing style of the individuals. Problem becomes more severe when the input image is doctor's prescription. Before feeding such image to the OCR engine, the classification of printed and handwritten texts is a necessity as doctor's prescription contains both handwritten and printed texts which are to be processed separately.


The diversity of video delivery pipeline poses a grand challenge to the evaluation of adaptive bitrate (ABR) streaming algorithms and objective quality-of-experience (QoE) models.

Here we introduce so-far the largest subject-rated database of its kind, namely WaterlooSQoE-IV, consisting of 1350 adaptive streaming videos created from diverse source contents, video encoders, network traces, ABR algorithms, and viewing devices.

We collect human opinions for each video with a series of carefully designed subjective experiments.


Dataset with images of soccer ball acquired by a humanoid robot competing in the RoboCup Humanoid Kidsize League.


These last decades, Earth Observation brought quantities of new perspectives from geosciences to human activity monitoring. As more data became available, artificial intelligence techniques led to very successful results for understanding remote sensing data. Moreover, various acquisition techniques such as Synthetic Aperture Radar (SAR) can also be used for problems that could not be tackled only through optical images. This is the case for weather-related disasters such as floods or hurricanes, which are generally associated with large clouds cover.