The data collection was carried out over several months and across several cities including but not limited to Quetta, Islamabad and Karachi, Pakistan. Ultimately, the number of images collected as part of the Pakistani dataset were, albeit in a very small quantity. The images taken were also distributed across the classes unevenly, just like the German dataset. All the 359 images were then manually cropped to filter out the unwanted image background data. All the images were sorted into folders with names corresponding to the label of the images.

Instructions: 

Dataset is divided by classes and the images inside the folder are named randomly and contain no useful labels in their names.

Categories:
522 Views

Holoscopic micro-gesture recognition (HoMG) database was recorded using a holoscopic 3D camera, which have 3 conventional gestures from 40 participants under different settings and conditions. The principle of holoscopic 3D (H3D) imaging mimics fly’s eye technique that captures a true 3D optical model of the scene using a microlens array. For the purpose of H3D micro-gesture recognition. HoMG database has two subsets. The video subset has 960 videos and the image subset has 30635 images, while both have three type of microgestures (classes).

Instructions: 

Holoscopic micro-gesture recognition (HoMG) database consists of 3 hand gestures: Button, Dial and Slider from 40 subjects with various ages and settings, which includes the right and left hand, two of record distance.

For video subset: There are 40 subjects, and each subject has 24 videos due to the different setting and three gestures. For each video, the frame rate is 25 frames per second and length of videos are from few seconds to 20 seconds and not equally. The whole dataset was divided into 3 parts. 20 subjects for the training set, 10 subjects for development set and another 10 subjects for testing set.

For image subset: Video can capture the motion information of the micro-gesture and it is a good way for micro-gesture recognition. From each video recording, the different number of frames were selected as the still micro-gesture images. The image resolution 1920 by 1080. In total, there are 30635 images selected. The whole dataset was split into three partitions: A Training, Development, and Testing partition. There are 15237 images in the training subsets of 20 participants with 8364 in close distance and 6853 in the far distance. There are 6956 images in the development subsets of 10 participants with 3077 in close distance and 3879 in far distance. There are 8442 images in the testing subsets of 10 participants with 3930 in close distance and 4512 in far distance.

Categories:
182 Views

Basil/Tulsi Plant is harvested in India because of some spiritual facts behind this plant,this plant is used for essential oil and pharmaceutical purpose. There are two types of Basil plants cultivated in India as Krushna Tulsi/Black Tulsi and Ram Tulsi/Green Tulsi.

Many of the investigator working on disease detection in Basil leaves where the following diseases occur

 1) Gray Mold

2) Basal Root Rot, Damping Off

 3) Fusarium Wilt and Crown Rot

Instructions: 

Basil/Tulsi Plant is harvested in India because of some spiritual facts behind this plant,this plant is used for essential oil and pharmaceutical purpose. There are two types of Basil plants cultivated in India as Krushna Tulsi/Black Tulsi and Ram Tulsi/Green Tulsi.

Many of the investigator working on disease detection in Basil leaves where the following diseases occur

 1) Gray Mold

2) Basal Root Rot, Damping Off

 3) Fusarium Wilt and Crown Rot

4) Leaf Spot

5) Downy Mildew

The Quality parameters (Healthy/Diseased) and also classification based on the texture and color of leaves. For the object detection purpose researcher using an algorithm like Yolo,  TensorFlow, OpenCV, deep learning, CNN

I had collected a dataset from the region Amravati, Pune, Nagpur Maharashtra state the format of the images is in .jpg.

Categories:
1631 Views

BTH Trucks in Aerial Images Dataset contains videos of 17 flights across two industrial harbors' parking spaces over two years.

Instructions: 

If you use these provided data in a publication or a scientific paper, please cite the dataset accordingly.

Categories:
568 Views

With the rapid development of augmented reality

Categories:
166 Views

With the rapid development of augmented reality

Categories:
Views

This paper produces a data set containing 1127 images, using VOC12 format, the size of the image is 3840*2160, and the corresponding relation of file names

Categories:
235 Views

Semantic segmentation is the topic of interest among deep learning researchers in the recent era.  It has many applications in different domains including, food recognition. In the case of food recognition, it removes the non-food background from the food portion. There is no large public food dataset available to train semantic segmentation models. We prepared a dataset named ’SEG-FOOD’[44] containing images of FOOD101, PFID, and Pakistani Food dataset and open-sourced the annotated dataset for future research. We annotated the images using JS Segment annotator.

Instructions: 

*  For detailed experimentation, please refer to our paper which is under review. we will update the link of that later.

* For starter code please refer to our Github repository. https://github.com/ghalib2021/SEGFOOD

* Note: This dataset contains images from Food101, PFID, and Pakistani Food Dataset. Our main contribution is the manual annotation of the food images for background removal using semantic segmentation and collection of Pakistani food dataset images. Please cite our work besides the original dataset collector if you are using a segmented dataset otherwise, cite the original dataset collector.

Categories:
650 Views

Pages