Deep Learning
Research on damage detection of road surfaces has been an active area of research, but most studies have focused so far on the detection of the presence of damages. However, in real-world scenarios, road managers need to clearly understand the type of damage and its extent in order to take effective action in advance or to allocate the necessary resources. Moreover, currently there are few uniform and openly available road damage datasets, leading to a lack of a common benchmark for road damage detection.
- Categories:

- Categories:
This dataset comes up as a benchmark dataset for machines to automatically recognizing the handwritten assamese digists (numerals) by extracting useful features by analyzing the structure. The Assamese language comprises of a total of 10 digits from 0 to 9. We have collected a total of 516 handwritten digits from 52 native assamese people irrespective of their age (12-86 years), gender, educational background etc. The digits are captured in .jpeg format using a paint mobile application developed by us which automatically saves the images in the internal storage of the mobile.
- Categories:
An accurate and reliable image-based quantification system for blueberries may be useful for the automation of harvest management. It may also serve as the basis for controlling robotic harvesting systems. Quantification of blueberries from images is a challenging task due to occlusions, differences in size, illumination conditions and the irregular amount of blueberries that can be present in an image. This paper proposes the quantification per image and per batch of blueberries in the wild, using high definition images captured using a mobile device.
- Categories:

In order to increase the diversity in signal datasets, we create a new dataset called HisarMod, which includes 26 classes and 5 different modulation families passing through 5 different wireless communication channel. During the generation of the dataset, MATLAB 2017a is employed for creating random bit sequences, symbols, and wireless fading channels.
- Categories:
As one of the research directions at OLIVES Lab @ Georgia Tech, we focus on the robustness of data-driven algorithms under diverse challenging conditions where trained models can possibly be depolyed. To achieve this goal, we introduced a large-sacle (~1.72M frames) traffic sign detection video dataset (CURE-TSD) which is among the most comprehensive datasets with controlled synthetic challenging conditions. The video sequences in the
- Categories:
As one of the research directions at OLIVES Lab @ Georgia Tech, we focus on the robustness of data-driven algorithms under diverse challenging conditions where trained models can possibly be depolyed.
- Categories:
This dataset includes all letters from Turkish Alphabet in two parts. In the first part, the dataset was categorized by letters, and the second part dataset was categorized by fonts. Both parts of dataset includes the features mentioned below.
-
72, 20 AND 8 POINT LETTERS
-
UPPER AND LOWER CASES
The all characters in Turkish Alphabet are included (a, b, c, ç, d, e, f, g, ğ, h, ı, i, j, k, l, m, n, o, ö, p, r, s, ş, t, u, ü, v, y, z).
- Categories:
Network traffic analysis, i.e. the umbrella of procedures for distilling information from network traffic, represents the enabler for highly-valuable profiling information, other than being the workhorse for several key network management tasks. While it is currently being revolutionized in its nature by the rising share of traffic generated by mobile and hand-held devices, existing design solutions are mainly evaluated on private traffic traces, and only a few public datasets are available, thus clearly limiting repeatability and further advances on the topic.
- Categories: