Skip to main content

WAV

To support research on multimodal speech emotion recognition (SER), we developed a dual-channel emotional speech database featuring synchronized recordings of bone-conducted (BC) and air-conducted (AC) speech. The recordings were conducted in a professionally treated anechoic chamber with 100 gender-balanced volunteers. AC speech was captured via a digital microphone on the left channel, while BC speech was recorded from an in-ear BC microphone on the right channel, both at a 44.1 kHz sampling rate to ensure high-fidelity audio. 

Categories:

QiandaoEar22 is a high-quality noise dataset designed for identifying specific ships among multiple underwater acoustic targets using ship-radiated noise. This dataset includes 9 hours and 28 minutes of real-world ship-radiated noise data and 21 hours and 58 minutes of background noise data.

Categories:

AIR-RS-DB: A dataset for classifying Spontaneous and Read Speech

 

A set of 1028 audio files generated from 7 mp3 files downloaded from All India Radio. https://newsonair.gov.in/ and converted into wav  and then speaker diarized is  using https://huggingface.co/pyannote/speaker-diarization (pyannote/speaker-diarization@2022072,model) and derive 1028 audio files.

These are available as air-rs-db.zip (which can be downloaded)

 

Categories:

The dataset consists of three parts, the first part consists of single notes and playing technique samples, and the second includes the triple viewed video, steoro-microphone recordings and 4 track optical vibration recordings in raw file for famous Chinese Folk music ‘Jasmine Flower’ and the first section of ‘Ambush from ten sides’. The third part concerns about the source separated tracks from optical recordings and expressive annotation files are included in the annotation files.

Categories:

Most of existing audio fingerprinting systems have limitations to be used for high-specific audio retrieval at scale. In this work, we generate a low-dimensional representation from a short unit segment of audio, and couple this fingerprint with a fast maximum inner-product search. To this end, we present a contrastive learning framework that derives from the segment-level search objective. Each update in training uses a batch consisting of a set of pseudo labels, randomly selected original samples, and their augmented replicas.

Categories:

The steganography and steganalysis of audio, especially compressed audio, have drawn increasing attention in recent years, and various algorithms are proposed. However, there is no standard public dataset for us to verify the efficiency of each proposed algorithm. Therefore, to promote the study field, we construct a dataset including 33038 stereo WAV audio clips with a sampling rate of 44.1 kHz and duration of 10s. And, all audio files are from the Internet through data crawling, which is for a better simulation of a real detection environment.

Categories: