Skip to main content

Machine Learning

One paramount challenge in multi-ion-sensing arises from ion interference that degrades the accuracy of sensor calibration. Machine learning models are here proposed to optimize such multivariate calibration. However, the acquisition of big experimental data is time and resource consuming in practice, necessitating new paradigms and efficient models for these data-limited frameworks. Therefore, a novel approach is presented in this work, where a multi-ion-sensing emulator is designed to explain the response of an ion-sensing array in a mixed-ion environment.

Categories:

Networked detector systems can be deployed in urban environments to aid in the detection and localization of radiological and/or nuclear material. However, effectively responding to and interpreting a radiological alarm using spec- troscopic data alone may be hampered by a lack of situational awareness, particularly in complex environments.

Categories:

Basil/Tulsi Plant is harvested in India because of some spiritual facts behind this plant,this plant is used for essential oil and pharmaceutical purpose. There are two types of Basil plants cultivated in India as Krushna Tulsi/Black Tulsi and Ram Tulsi/Green Tulsi.

Many of the investigator working on disease detection in Basil leaves where the following diseases occur

 1) Gray Mold

2) Basal Root Rot, Damping Off

 3) Fusarium Wilt and Crown Rot

4) Leaf Spot

5) Downy Mildew

Categories:

The PD-BioStampRC21 dataset provides data from a wearable sensor
accelerometry study conducted for studying activity, gait, tremor, and
other motor symptoms in individuals with Parkinson's disease (PD).  In
addition to individuals with PD, the dataset also includes data for
controls that also went through the same study protocol as the PD
participants.  Data were acquired using lightweight MC 10 BioStamp RC
sensors (MC 10 Inc, Lexington, MA), five of which were attached to
each participant for gathering data over a roughly two day
interval.

Categories: