Machine Learning
PROTEIN STRUCTURE AND SYNTHETIC MULTI-VIEW CLUSTERING DATASETS
Multi-View Clustering (MVC) datasets used in the following paper:
Evolutionary Multi-objective Clustering Over Multiple Conflicting Data Views. Authors: Mario Garza-Fabre, Julia Handl, and Adán José-García. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION. Accepted for publication, November 2022.
This entry contains all 420 datasets used in the paper, including:
- Categories:
This synthetic dataset is generated using Matlab automotive driving toolbox to simulate a 77GHz FMCW millimeter-wave radar sensing in the road scenario. Especially for the Doppler ambiguity case, when the object vehicles move within or out of the unambiguous detecable velocity range. The dataset contains in total 20 recordings with the duration of 1 second each. Both time-division modulation (TDM) and binary phase modulation (BPM) data are provided. Each recording consists of complex ADC raw data and complex range-Doppler map, together with the ground-truth range and velocity.
- Categories:
Biometric management and that to which uses face, is indeed a very challenging work and requires a dedicated dataset which imbibes in it variations in pose, emotion and even occlusions. The Current work aims at delivering a dataset for training and testing purposes.SJB Face dataset is one such Indian face image dataset, which can be used to recognize faces. SJB Face dataset contains face images which were collected from digital camera. The face dataset collected has certain conditions such as different pose, Expressions, face partially occluded and with a uniform attire.
- Categories:
Evolving from the well-known ray-tracing dataset DeepMIMO, the DeepVerse 6G dataset additionally provides multi-modal sensing data generated from various emulators. These emulators provide the wireless, radar, LiDAR, vision and position data. With a parametric generator, the DeepVerse dataset can be customized by the user for various communication and sensing applications.
- Categories:
Beam management is a challenging task for millimeter wave (mmWave) and sub-terahertz communication systems, especially in scenarios with highly-mobile users. Leveraging external sensing modalities such as vision, LiDAR, radar, position, or a combination of them, to address this beam management challenge has recently attracted increasing interest from both academia and industry. This is mainly motivated by the dependency of the beam direction decision on the user location and the geometry of the surrounding environment---information that can be acquired from the sensory data.
- Categories:
This work presents a dataset based on multiple metrics namely KQIs, which provide the E2E conditions of different services. Particularly, the dataset considers video streaming and cloud gaming (CG) services.
- Categories:
Future wireless networks must incorporate awareness, adaptability, and intelligence as fundamental building elements in order to meet the wide range of requirements of the next-generation communication systems. Wireless sensing techniques can be used to gather awareness from the radio signals present in the surroundings. However, threats from hostile attackers, such as jamming, eavesdropping, and manipulation, are also present along with this. This paper describes in detail an RF-jamming detection test-bed and provides experimentally measured data.
- Categories:
This dataset provides wireless measurements from two industrial testbeds: iV2V (industrial Vehicle-to-Vehicle) and iV2I+ (industrial Vehicular-to-Infrastructure plus sensor).
iV2V covers 10h of sidelink communication scenarios between 3 Automated Guided Vehicles (AGVs), while iV2I+ was conducted for around 16h at an industrial site where an autonomous cleaning robot is connected to a private cellular network.
- Categories:
The complete description of the dataset can be found at: https://arxiv.org/abs/2305.03170
- Categories: