Cloud Computing
This dataset contains .pcap files collected during the execution of variant calling on large number of human genomes using a cluster. The GATK4 variant calling pipeline was executed using AVAH in two testbeds, CloudLab and FABRIC. A 16-node cluster was used on CloudLab, and an 8-node cluster was used on FABRIC. The files were collected by running tcpdump on the network interfaces of the nodes.
- Categories:
Currently, Internet applications running on mobile devices generate a massive amount of data that can be transmitted to a Cloud for processing. However, one fundamental limitation of a Cloud is the connectivity with end devices. Fog computing overcomes this limitation and supports the requirements of time-sensitive applications by distributing computation, communication, and storage services along the Cloud to Things (C2T) continuum, empowering potential new applications, such as smart cities, augmented reality (AR), and virtual reality (VR).
- Categories:
The main objective of this project is to design and develop a collaborative framework which facilitates real-time tracking of a target person even when GPS signal is not available, while collecting motion data to infer his or her lifestyle and health status. The framework orchestrates a wide range of technologies such as localization technologies, machine learning and AI, sensor data analytics and cloud computing. The overall framework design also takes into consideration the culture, lifestyles, behaviours and infrastructures of ASEAN countries.
- Categories:
Performance interference experiments produced by Storiks 0.4 on the following storage devices:
- Samsung 980PRO 250GB
- Samsung 970EVO Plus 250GB
- Samsung 970EVO 500GB
- Categories:
The files contain the raw data and corresponding analysis for the related IEEE paper
- Categories:
This work aims to identify anomalous patterns that could be associated with performance degradation and failures in datacenter nodes, such as Virtual Machines or Virtual Machines clusters. The early detection of anomalies can enable early remediation measures, such as Virtual Machines migration and resource reallocation before losses occur. One way to detect anomalous patterns in datacenter nodes is using monitoring data from the nodes, such as CPU and memory utilization.
- Categories:
This ZIP contains task-level CPU data for the streaming engines Apache Flink, Apache Spark Structured Streaming and Apache Spark Continous Processing.
This data was collected via our task-level performance benchmark: https://github.com/rankj/YSB-task-level
- Categories:
Please cite the following paper when using this dataset:
N. Thakur and C.Y. Han, “An Exploratory Study of Tweets about the SARS-CoV-2 Omicron Variant: Insights from Sentiment Analysis, Language Interpretation, Source Tracking, Type Classification, and Embedded URL Detection,” Journal of COVID, 2022, Volume 5, Issue 3, pp. 1026-1049
Abstract
- Categories: